IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v48y2016i4d10.1007_s10614-015-9538-z.html
   My bibliography  Save this article

Simulation Studies Comparing Dagum and Singh–Maddala Income Distributions

Author

Listed:
  • Kazuhiko Kakamu

    (Kobe University)

Abstract

Dagum and Singh–Maddala distributions have been widely assumed as models for income distribution in empirical analyses. The properties of these distributions are well known and several estimation methods for these distributions from grouped data have been discussed widely. Moreover, previous studies argue that the Dagum distribution gives a better fit than the Singh–Maddala distribution in the empirical analyses. This study explores the reason why Dagum distribution is preferred to the Singh–Maddala distribution in terms of the akaike information criterion through Monte Carlo experiments. In addition, the properties of the Gini coefficients and the top income shares from these distributions are examined by means of root mean square errors. From the experiments, we confirm that the fit of the distributions depends on the relationships and magnitudes of the parameters. Furthermore, we confirm that the root mean square errors of the Gini coefficients and top income shares depend on the relationships of the parameters when the data-generating processes are a generalized beta distribution of the second kind.

Suggested Citation

  • Kazuhiko Kakamu, 2016. "Simulation Studies Comparing Dagum and Singh–Maddala Income Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 593-605, December.
  • Handle: RePEc:kap:compec:v:48:y:2016:i:4:d:10.1007_s10614-015-9538-z
    DOI: 10.1007/s10614-015-9538-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-015-9538-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-015-9538-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anthony B. Atkinson & Thomas Piketty & Emmanuel Saez, 2011. "Top Incomes in the Long Run of History," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 3-71, March.
    2. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    3. Christian Kleiber, 2008. "A Guide to the Dagum Distributions," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 6, pages 97-117, Springer.
    4. Majumder, Amita & Chakravarty, Satya Ranjan, 1990. "Distribution of Personal Income: Development of a New Model and Its Application to U.S. Income Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 189-196, April-Jun.
    5. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    6. Kleiber, Christian, 1996. "Dagum vs. Singh-Maddala income distributions," Economics Letters, Elsevier, vol. 53(3), pages 265-268, December.
    7. Brzezinski, Michal, 2013. "Asymptotic and bootstrap inference for top income shares," Economics Letters, Elsevier, vol. 120(1), pages 10-13.
    8. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    9. McDonald, James B & Mantrala, Anand, 1995. "The Distribution of Personal Income: Revisited," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 201-204, April-Jun.
    10. Singh, S K & Maddala, G S, 1976. "A Function for Size Distribution of Incomes," Econometrica, Econometric Society, vol. 44(5), pages 963-970, September.
    11. McDonald, James B & Ransom, Michael R, 1979. "Functional Forms, Estimation Techniques and the Distribution of Income," Econometrica, Econometric Society, vol. 47(6), pages 1513-1525, November.
    12. Gholamreza Hajargasht & William E. Griffiths & Joseph Brice & D.S. Prasada Rao & Duangkamon Chotikapanich, 2012. "Inference for Income Distributions Using Grouped Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 563-575, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman & AL-Dhurafi, Nasr Ahmed, 2020. "The power-law distribution for the income of poor households," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    2. Michel Lubrano & Zhou Xun, 2023. "The Bayesian approach to poverty measurement," Post-Print halshs-04135764, HAL.
    3. Kazuhiko Kakamu, 2022. "Bayesian analysis of mixtures of lognormal distribution with an unknown number of components from grouped data," Papers 2210.05115, arXiv.org, revised Sep 2023.
    4. Kazuhiko Kakamu & Haruhisa Nishino, 2019. "Bayesian Estimation of Beta-type Distribution Parameters Based on Grouped Data," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 625-645, August.
    5. Genya Kobayashi & Kazuhiko Kakamu, 2019. "Approximate Bayesian computation for Lorenz curves from grouped data," Computational Statistics, Springer, vol. 34(1), pages 253-279, March.
    6. Tobias Eckernkemper & Bastian Gribisch, 2021. "Classical and Bayesian Inference for Income Distributions using Grouped Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(1), pages 32-65, February.
    7. Michel Lubrano & Zhou Xun, 2021. "The Bayesian approach to poverty measurement," AMSE Working Papers 2133, Aix-Marseille School of Economics, France.
    8. Jinjing Ma & Min Lei & Huan Yu & Rui Li, 2023. "A Study on Temporal and Spatial Differences in Women’s Well-Being in an Ecologically Vulnerable Area in Northwest China," Sustainability, MDPI, vol. 15(3), pages 1-24, January.
    9. Enrico Fabrizi & Maria Rosaria Ferrante & Carlo Trivisano, 2020. "A functional approach to small area estimation of the relative median poverty gap," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1273-1291, June.
    10. Michel Lubrano & Zhou Xun, 2023. "The Bayesian approach to poverty measurement," Post-Print hal-04347292, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    2. Kazuhiko Kakamu & Haruhisa Nishino, 2019. "Bayesian Estimation of Beta-type Distribution Parameters Based on Grouped Data," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 625-645, August.
    3. Kazuhiko Kakamu & Haruhisa Nishino, 2016. "Bayesian Estimation Of Beta-Type Distribution Parameters Based On Grouped Data," Discussion Papers 2016-08, Kobe University, Graduate School of Business Administration.
    4. Sung Y. Park & Anil K. Bera, 2018. "Information theoretic approaches to income density estimation with an application to the U.S. income data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 461-486, December.
    5. Christophe Muller, 2001. "The Properties of the Watts Poverty Index under Lognormality," Economics Bulletin, AccessEcon, vol. 9(1), pages 1-9.
    6. Feng Zhu, 2005. "A nonparametric analysis of the shape dynamics of the US personal income distribution: 1962-2000," BIS Working Papers 184, Bank for International Settlements.
    7. Christian Kleiber, 2008. "A Guide to the Dagum Distributions," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 6, pages 97-117, Springer.
    8. Dorothée Boccanfuso & Bernard Decaluwé & Luc Savard, 2003. "Poverty, Income Distribution and CGE Modeling: Does the Functional Form of Distribution Matter?," Cahiers de recherche 0332, CIRPEE.
    9. John Dagsvik & Zhiyang Jia & Bjørn Vatne & Weizhen Zhu, 2013. "Is the Pareto–Lévy law a good representation of income distributions?," Empirical Economics, Springer, vol. 44(2), pages 719-737, April.
    10. F. Clementi & A. L. Dabalen & V. Molini & F. Schettino, 2020. "We forgot the middle class! Inequality underestimation in a changing Sub-Saharan Africa," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 18(1), pages 45-70, March.
    11. Fabio Clementi & Mauro Gallegati & Giorgio Kaniadakis, 2010. "A model of personal income distribution with application to Italian data," Empirical Economics, Springer, vol. 39(2), pages 559-591, October.
    12. Dorothée Boccanfuso & Bernard Decaluwé & Luc Savard, 2008. "Poverty, income distribution and CGE micro-simulation modeling: Does the functional form of distribution matter?," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(2), pages 149-184, June.
    13. Markus P. A. Schneider, 2013. "Race & Gender Differences in the Experience of Earnings Inequality in the US from 1995 to 2010," Working Papers 1303, New School for Social Research, Department of Economics.
    14. Eckerstorfer, Paul & Halak, Johannes & Kapeller, Jakob & Schütz, Bernhard & Springholz, Florian & Wildauer, Rafael, 2014. "Vermögen in Österreich," Greenwich Papers in Political Economy 23617, University of Greenwich, Greenwich Political Economy Research Centre.
    15. Vinh, Andrea & Griffiths, William E. & Chotikapanich, Duangkamon, 2010. "Bivariate income distributions for assessing inequality and poverty under dependent samples," Economic Modelling, Elsevier, vol. 27(6), pages 1473-1483, November.
    16. Brzezinski, Michal, 2014. "Empirical modeling of the impact factor distribution," Journal of Informetrics, Elsevier, vol. 8(2), pages 362-368.
    17. Domma, Filippo & Condino, Francesca & Giordano, Sabrina, 2018. "A new formulation of the Dagum distribution in terms of income inequality and poverty measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 104-126.
    18. José María Sarabia & Vanesa Jordá & Faustino Prieto & Montserrat Guillén, 2020. "Multivariate Classes of GB2 Distributions with Applications," Mathematics, MDPI, vol. 9(1), pages 1-21, December.
    19. Walter, Paul & Weimer, Katja, 2018. "Estimating poverty and inequality indicators using interval censored income data from the German microcensus," Discussion Papers 2018/10, Free University Berlin, School of Business & Economics.
    20. Frank A. Cowell & Philippe Kerm, 2015. "Wealth Inequality: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(4), pages 671-710, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:48:y:2016:i:4:d:10.1007_s10614-015-9538-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.