IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v6y2018i2p21-d141682.html
   My bibliography  Save this article

Using the GB2 Income Distribution

Author

Listed:
  • Duangkamon Chotikapanich

    (Monash Business School, Monash University, Melbourne VIC 3145, Australia)

  • William E. Griffiths

    (Department of Economics, University of Melbourne, Melbourne VIC 3010, Australia)

  • Gholamreza Hajargasht

    (Department of Accounting, Economics and Finance, Swinburne University of Technology, Hawthorn VIC 3122, Australia)

  • Wasana Karunarathne

    (Department of Economics, University of Melbourne, Melbourne VIC 3010, Australia)

  • D. S. Prasada Rao

    (School of Economics, University of Queensland, St. Lucia QLD 4072, Australia)

Abstract

To use the generalized beta distribution of the second kind (GB2) for the analysis of income and other positively skewed distributions, knowledge of estimation methods and the ability to compute quantities of interest from the estimated parameters are required. We review estimation methodology that has appeared in the literature, and summarize expressions for inequality, poverty, and pro-poor growth that can be used to compute these measures from GB2 parameter estimates. An application to data from China and Indonesia is provided.

Suggested Citation

  • Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D. S. Prasada Rao, 2018. "Using the GB2 Income Distribution," Econometrics, MDPI, vol. 6(2), pages 1-24, April.
  • Handle: RePEc:gam:jecnmx:v:6:y:2018:i:2:p:21-:d:141682
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/6/2/21/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/6/2/21/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Foster, James & Greer, Joel & Thorbecke, Erik, 1984. "A Class of Decomposable Poverty Measures," Econometrica, Econometric Society, vol. 52(3), pages 761-766, May.
    2. Cummins, J. David & Dionne, Georges & McDonald, James B. & Pritchett, B. Michael, 1990. "Applications of the GB2 family of distributions in modeling insurance loss processes," Insurance: Mathematics and Economics, Elsevier, vol. 9(4), pages 257-272, December.
    3. Duangkamon Chotikapanich & William Griffiths & Wasana Karunarathne & D.S. Prasada Rao, 2013. "Calculating Poverty Measures from the Generalised Beta Income Distribution," The Economic Record, The Economic Society of Australia, vol. 89, pages 48-66, June.
    4. Hajargasht, Gholamreza & Griffiths, William E., 2013. "Pareto–lognormal distributions: Inequality, poverty, and estimation from grouped income data," Economic Modelling, Elsevier, vol. 33(C), pages 593-604.
    5. Stephen P. Jenkins, 2009. "Distributionally‐Sensitive Inequality Indices And The Gb2 Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 55(2), pages 392-398, June.
    6. Gholamreza Hajargasht & William E. Griffiths & Joseph Brice & D.S. Prasada Rao & Duangkamon Chotikapanich, 2012. "Inference for Income Distributions Using Grouped Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 563-575, May.
    7. Claudio Quintano & Antonella D'Agostino, 2006. "Studying Inequality In Income Distribution Of Single‐Person Households In Four Developed Countries," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 52(4), pages 525-546, December.
    8. Griffiths, William & Hajargasht, Gholamreza, 2015. "On GMM estimation of distributions from grouped data," Economics Letters, Elsevier, vol. 126(C), pages 122-126.
    9. Andrew M. Jones & James Lomas & Nigel Rice, 2014. "Applying Beta‐Type Size Distributions To Healthcare Cost Regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(4), pages 649-670, June.
    10. Nanak Kakwani & Shahid Khandker & Hyun H. Son, 2004. "Pro-poor growth: concepts and measurement with country case studies," Working Papers 1, International Policy Centre for Inclusive Growth.
    11. Pernia, Ernesto & Kakwani, Nanak, 2000. "What is Pro-poor Growth?," MPRA Paper 104987, University Library of Munich, Germany.
    12. Chotikapanich, Duangkamon & Griffiths, William E. & Rao, D. S. Prasada, 2007. "Estimating and Combining National Income Distributions Using Limited Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 97-109, January.
    13. James B. Mcdonald & Jeff Sorensen & Patrick A. Turley, 2013. "Skewness And Kurtosis Properties Of Income Distribution Models," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 59(2), pages 360-374, June.
    14. Robert F. Bordley & James B. McDonald & Anand Mantrala, 1997. "Something New, Something Old: Parametric Models for the Size of Distribution of Income," Journal of Income Distribution, Ad libros publications inc., vol. 6(1), pages 5-5, June.
    15. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    16. Monique Graf & Desislava Nedyalkova, 2014. "Modeling of Income and Indicators of Poverty and Social Exclusion Using the Generalized Beta Distribution of the Second Kind," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(4), pages 821-842, December.
    17. Butler, Richard J. & McDonald, James B., 1989. "Using incomplete moments to measure inequality," Journal of Econometrics, Elsevier, vol. 42(1), pages 109-119, September.
    18. Feng, Shuaizhang & Burkhauser, Richard V. & Butler, J.S., 2006. "Levels and Long-Term Trends in Earnings Inequality: Overcoming Current Population Survey Censoring Problems Using the GB2 Distribution," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 57-62, January.
    19. Ravallion, Martin & Chen, Shaohua, 2003. "Measuring pro-poor growth," Economics Letters, Elsevier, vol. 78(1), pages 93-99, January.
    20. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 69(2), pages 427-428, October.
    21. Sen, Amartya K, 1976. "Poverty: An Ordinal Approach to Measurement," Econometrica, Econometric Society, vol. 44(2), pages 219-231, March.
    22. James B. McDonald & Michael Ransom, 2008. "The Generalized Beta Distribution as a Model for the Distribution of Income: Estimation of Related Measures of Inequality," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 8, pages 147-166, Springer.
    23. Martin Biewen & Stephen Jenkins, 2005. "A framework for the decomposition of poverty differences with an application to poverty differences between countries," Empirical Economics, Springer, vol. 30(2), pages 331-358, September.
    24. Parker, Simon C, 1999. "The Beta as a Model for the Distribution of Earnings," Bulletin of Economic Research, Wiley Blackwell, vol. 51(3), pages 243-251, July.
    25. Duangkamon Chotikapanich & William E. Griffiths & D. S. Prasada Rao & Vicar Valencia, 2012. "Global Income Distributions and Inequality, 1993 and 2000: Incorporating Country-Level Inequality Modeled with Beta Distributions," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 52-73, February.
    26. Sarabia, José María & Jordá, Vanesa, 2014. "Explicit expressions of the Pietra index for the generalized function for the size distribution of income," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 582-595.
    27. Parker, Simon C., 1999. "The generalised beta as a model for the distribution of earnings," Economics Letters, Elsevier, vol. 62(2), pages 197-200, February.
    28. Audrey Chouchane & Jean-Yves Duclos, 2010. "Working Paper 115 - Analyzing Pro-Poor Growth in Southern Africa: Lessons from Mauritius and South Africa," Working Paper Series 253, African Development Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Villas-Boas, Sofia B. & Fu, Qiuzi & Judge, George, 2019. "Entropy based European income distributions and inequality measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 686-698.
    2. Mathias Silva, 2023. "Parametric estimation of income distributions using grouped data: an Approximate Bayesian Computation approach [Working Papers / Documents de travail]," Working Papers hal-04066544, HAL.
    3. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    4. Masato Okamoto, 2022. "Lorenz and Polarization Orderings of the Double-Pareto Lognormal Distribution and Other Size Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 548-574, November.
    5. Vanesa Jorda & José María Sarabia & Markus Jäntti, 2021. "Inequality measurement with grouped data: Parametric and non‐parametric methods," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 964-984, July.
    6. Walter Bossert & Conchita D’Ambrosio & Kohei Kamaga, 2021. "Extreme Values, Means, and Inequality Measurement," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 67(3), pages 564-590, September.
    7. Vanesa Jorda & José María Sarabia & Markus Jäntti, 2020. "Estimation of Income Inequality from Grouped Data," LIS Working papers 804, LIS Cross-National Data Center in Luxembourg.
    8. Jiong Liu & R. A. Serota, 2023. "Rethinking Generalized Beta family of distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-14, February.
    9. Mathias Silva, 2023. "Parametric models of income distributions integrating misreporting and non-response mechanisms," AMSE Working Papers 2311, Aix-Marseille School of Economics, France.
    10. Jordá, Vanesa & Niño-Zarazúa, Miguel, 2019. "Global inequality: How large is the effect of top incomes?," World Development, Elsevier, vol. 123(C), pages 1-1.
    11. Jiong Liu & R. A. Serota, 2022. "Rethinking Generalized Beta Family of Distributions," Papers 2209.05225, arXiv.org.
    12. José María Sarabia & Vanesa Jordá & Faustino Prieto & Montserrat Guillén, 2020. "Multivariate Classes of GB2 Distributions with Applications," Mathematics, MDPI, vol. 9(1), pages 1-21, December.
    13. Dashti Moghaddam, M. & Mills, Jeffrey & Serota, R.A., 2020. "From a stochastic model of economic exchange to measures of inequality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    14. Amparo Ba'illo & Javier C'arcamo & Carlos Mora-Corral, 2021. "Extremal points of Lorenz curves and applications to inequality analysis," Papers 2103.03286, arXiv.org.
    15. William Griffiths & Duangkamon Chotikapanich & Gholamreza Hajargasht, 2021. "A Note on Inequality Measures for Mixtures of Double Pareto-Lognormal Distributions," Monash Econometrics and Business Statistics Working Papers 14/21, Monash University, Department of Econometrics and Business Statistics.
    16. Kyohei Shibano & Gento Mogi, 2020. "Electricity Consumption Forecast Model Using Household Income: Case Study in Tanzania," Energies, MDPI, vol. 13(10), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D.S. Prasada Rao, 2018. "Using the GB2 Income Distribution: A Review," Department of Economics - Working Papers Series 2036, The University of Melbourne.
    2. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    3. Duangkamon Chotikapanich & William Griffiths & Wasana Karunarathne & D.S. Prasada Rao, 2013. "Calculating Poverty Measures from the Generalised Beta Income Distribution," The Economic Record, The Economic Society of Australia, vol. 89, pages 48-66, June.
    4. Chotikapanich, Duangkamon & Griffiths, William E. & Rao, D.S. Prasada & Karunarathne, Wasana, 2014. "Income Distributions, Inequality, and Poverty in Asia, 1992–2010," ADBI Working Papers 468, Asian Development Bank Institute.
    5. Hajargasht, Gholamreza & Griffiths, William E., 2013. "Pareto–lognormal distributions: Inequality, poverty, and estimation from grouped income data," Economic Modelling, Elsevier, vol. 33(C), pages 593-604.
    6. Gholamreza Hajargsht & William E. Griffiths & Joseph Brice & D.S. Prasada Rao & Duangkamon Chotikapanich, 2011. "GMM Estimation of Income Distributions from Grouped Data," Department of Economics - Working Papers Series 1129, The University of Melbourne.
    7. Walter, Paul & Weimer, Katja, 2018. "Estimating poverty and inequality indicators using interval censored income data from the German microcensus," Discussion Papers 2018/10, Free University Berlin, School of Business & Economics.
    8. Michał Brzeziński, 2013. "Parametric Modelling of Income Distribution in Central and Eastern Europe," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 5(3), pages 207-230, September.
    9. Mathias Silva, 2023. "Parametric estimation of income distributions using grouped data: an Approximate Bayesian Computation approach [Working Papers / Documents de travail]," Working Papers hal-04066544, HAL.
    10. Kazuhiko Kakamu & Haruhisa Nishino, 2019. "Bayesian Estimation of Beta-type Distribution Parameters Based on Grouped Data," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 625-645, August.
    11. Sugasawa, Shonosuke & Kobayashi, Genya & Kawakubo, Yuki, 2020. "Estimation and inference for area-wise spatial income distributions from grouped data," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    12. Louis Chauvel, 2014. "The Intensity and Shape of Inequality: The ABG Method of Distributional Analysis," LIS Working papers 609, LIS Cross-National Data Center in Luxembourg.
    13. Louis Chauvel, 2016. "The Intensity and Shape of Inequality: The ABG Method of Distributional Analysis," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 62(1), pages 52-68, March.
    14. Gholamreza Hajargasht & William E. Griffiths & Joseph Brice & D.S. Prasada Rao & Duangkamon Chotikapanich, 2012. "Inference for Income Distributions Using Grouped Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 563-575, May.
    15. Callealta Barroso, Francisco Javier & García-Pérez, Carmelo & Prieto-Alaiz, Mercedes, 2020. "Modelling income distribution using the log Student’s t distribution: New evidence for European Union countries," Economic Modelling, Elsevier, vol. 89(C), pages 512-522.
    16. Vanesa Jorda & José María Sarabia & Markus Jäntti, 2021. "Inequality measurement with grouped data: Parametric and non‐parametric methods," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 964-984, July.
    17. Stephen P. Jenkins, 2007. "Inequality and the GB2 income distribution," Working Papers 73, ECINEQ, Society for the Study of Economic Inequality.
    18. José María Sarabia & Vanesa Jordá & Faustino Prieto & Montserrat Guillén, 2020. "Multivariate Classes of GB2 Distributions with Applications," Mathematics, MDPI, vol. 9(1), pages 1-21, December.
    19. Boccanfuso, Dorothée & Richard, Patrick & Savard, Luc, 2013. "Parametric and nonparametric income distribution estimators in CGE micro-simulation modeling," Economic Modelling, Elsevier, vol. 35(C), pages 892-899.
    20. Nartikoev, Alan & Peresetsky, Anatoly, 2019. "Modeling the dynamics of income distribution in Russia," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 54, pages 105-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:6:y:2018:i:2:p:21-:d:141682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.