Estimation and inference for area-wise spatial income distributions from grouped data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2019.106904
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Griffiths, William & Hajargasht, Gholamreza, 2015. "On GMM estimation of distributions from grouped data," Economics Letters, Elsevier, vol. 126(C), pages 122-126.
- Nishino, Haruhisa & Kakamu, Kazuhiko, 2015. "A random walk stochastic volatility model for income inequality," Japan and the World Economy, Elsevier, vol. 36(C), pages 21-28.
- James B. McDonald, 2008.
"Some Generalized Functions for the Size Distribution of Income,"
Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55,
Springer.
- McDonald, James B, 1984. "Some Generalized Functions for the Size Distribution of Income," Econometrica, Econometric Society, vol. 52(3), pages 647-663, May.
- Chotikapanich, Duangkamon & Griffiths, William E. & Rao, D. S. Prasada, 2007.
"Estimating and Combining National Income Distributions Using Limited Data,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 97-109, January.
- D.S. Prasada Rao & Duangkamon Chotikapanich & William E. Griffiths, 2004. "Estimating and Combining National Income Distributions using Limited Data," Econometric Society 2004 Australasian Meetings 213, Econometric Society.
- Duangkamon Chotikapanich & William E. Griffiths & D.S. Prasada Rao, 2005. "Estimating and Combining National Income Distributions using Limited Data," Department of Economics - Working Papers Series 926, The University of Melbourne.
- Wu, Ximing & Perloff, Jeffrey M., 2007. "GMM estimation of a maximum entropy distribution with interval data," Journal of Econometrics, Elsevier, vol. 138(2), pages 532-546, June.
- Hajargasht, Gholamreza & Griffiths, William E., 2013. "Pareto–lognormal distributions: Inequality, poverty, and estimation from grouped income data," Economic Modelling, Elsevier, vol. 33(C), pages 593-604.
- McDonald, James B. & Xu, Yexiao J., 1995.
"A generalization of the beta distribution with applications,"
Journal of Econometrics, Elsevier, vol. 69(2), pages 427-428, October.
- McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 133-152.
- Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
- Singh, S K & Maddala, G S, 1976. "A Function for Size Distribution of Incomes," Econometrica, Econometric Society, vol. 44(5), pages 963-970, September.
- Duangkamon Chotikapanich & William E. Griffiths & D. S. Prasada Rao & Vicar Valencia, 2012. "Global Income Distributions and Inequality, 1993 and 2000: Incorporating Country-Level Inequality Modeled with Beta Distributions," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 52-73, February.
- Haruhisa Nishino & Kazuhiko Kakamu & Takashi Oga, 2012. "Bayesian estimation of Persistent Income Inequality using the Lognormal Stochastic Volatility Model," Journal of Income Distribution, Ad libros publications inc., vol. 21(1), pages 88-101, March.
- Gholamreza Hajargasht & William E. Griffiths & Joseph Brice & D.S. Prasada Rao & Duangkamon Chotikapanich, 2012.
"Inference for Income Distributions Using Grouped Data,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 563-575, May.
- Gholamreza Hajargsht, William E. Griffiths, Joseph Brice, D.S. Prasada Rao, Duangkamon Chotikapanich, 2012. "Inference for Income Distributions Using Grouped Data," Department of Economics - Working Papers Series 1140, The University of Melbourne.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D. S. Prasada Rao, 2018. "Using the GB2 Income Distribution," Econometrics, MDPI, vol. 6(2), pages 1-24, April.
- Gholamreza Hajargsht & William E. Griffiths & Joseph Brice & D.S. Prasada Rao & Duangkamon Chotikapanich, 2011. "GMM Estimation of Income Distributions from Grouped Data," Department of Economics - Working Papers Series 1129, The University of Melbourne.
- Gholamreza Hajargasht & William E. Griffiths & Joseph Brice & D.S. Prasada Rao & Duangkamon Chotikapanich, 2012.
"Inference for Income Distributions Using Grouped Data,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 563-575, May.
- Gholamreza Hajargsht, William E. Griffiths, Joseph Brice, D.S. Prasada Rao, Duangkamon Chotikapanich, 2012. "Inference for Income Distributions Using Grouped Data," Department of Economics - Working Papers Series 1140, The University of Melbourne.
- Chotikapanich, Duangkamon & Griffiths, William E. & Rao, D.S. Prasada & Karunarathne, Wasana, 2014. "Income Distributions, Inequality, and Poverty in Asia, 1992–2010," ADBI Working Papers 468, Asian Development Bank Institute.
- Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D.S. Prasada Rao, 2018. "Using the GB2 Income Distribution: A Review," Department of Economics - Working Papers Series 2036, The University of Melbourne.
- Duangkamon Chotikapanich & William Griffiths & Wasana Karunarathne & D.S. Prasada Rao, 2013.
"Calculating Poverty Measures from the Generalised Beta Income Distribution,"
The Economic Record, The Economic Society of Australia, vol. 89, pages 48-66, June.
- Duangkamon Chotikapanich, William Griffiths, Wasana Karunarathne, D.S. Prasada Rao, 2012. "Calculating Poverty Measures from the Generalized Beta Income Distribution," Department of Economics - Working Papers Series 1154, The University of Melbourne.
- Hajargasht, Gholamreza & Griffiths, William E., 2013. "Pareto–lognormal distributions: Inequality, poverty, and estimation from grouped income data," Economic Modelling, Elsevier, vol. 33(C), pages 593-604.
- Sung Y. Park & Anil K. Bera, 2018.
"Information theoretic approaches to income density estimation with an application to the U.S. income data,"
The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 461-486, December.
- Sung Y. Park & Anil K. Bera, 2018. "Information theoretic approaches to income density estimation with an application to the U.S. income data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 461-486, December.
- Tobias Eckernkemper & Bastian Gribisch, 2021. "Classical and Bayesian Inference for Income Distributions using Grouped Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(1), pages 32-65, February.
- Alexis Akira Toda & Yulong Wang, 2021.
"Efficient minimum distance estimation of Pareto exponent from top income shares,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(2), pages 228-243, March.
- Alexis Akira Toda & Yulong Wang, 2019. "Efficient Minimum Distance Estimation of Pareto Exponent from Top Income Shares," Papers 1901.02471, arXiv.org, revised Feb 2020.
- Walter, Paul & Weimer, Katja, 2018. "Estimating poverty and inequality indicators using interval censored income data from the German microcensus," Discussion Papers 2018/10, Free University Berlin, School of Business & Economics.
- Michał Brzeziński, 2013.
"Parametric Modelling of Income Distribution in Central and Eastern Europe,"
Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 5(3), pages 207-230, September.
- Michał Brzeziński, 2013. "Parametric modelling of income distribution in Central and Eastern Europe," Working Papers 2013-31, Faculty of Economic Sciences, University of Warsaw.
- Griffiths, William & Hajargasht, Gholamreza, 2015. "On GMM estimation of distributions from grouped data," Economics Letters, Elsevier, vol. 126(C), pages 122-126.
- Kazuhiko Kakamu & Haruhisa Nishino, 2016. "Bayesian Estimation Of Beta-Type Distribution Parameters Based On Grouped Data," Discussion Papers 2016-08, Kobe University, Graduate School of Business Administration.
- Kazuhiko Kakamu & Haruhisa Nishino, 2019. "Bayesian Estimation of Beta-type Distribution Parameters Based on Grouped Data," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 625-645, August.
- William E. Griffiths and Gholamreza Hajargasht, 2012. "GMM Estimation of Mixtures from Grouped Data:," Department of Economics - Working Papers Series 1148, The University of Melbourne.
- Camelia Minoiu & Sanjay Reddy, 2014. "Kernel density estimation on grouped data: the case of poverty assessment," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 12(2), pages 163-189, June.
- Dorothée Boccanfuso & Bernard Decaluwé & Luc Savard, 2008. "Poverty, income distribution and CGE micro-simulation modeling: Does the functional form of distribution matter?," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(2), pages 149-184, June.
- Fernández-Morales, Antonio, 2016. "Measuring poverty with the Foster, Greer and Thorbecke indexes based on the Gamma distribution," MPRA Paper 69648, University Library of Munich, Germany.
- Tsvetana Spasova, 2019.
"Regional Income Distribution in the European Union: A Parametric Approach,"
Research on Economic Inequality, in: What Drives Inequality?, volume 27, pages 1-18,
Emerald Group Publishing Limited.
- Spasova, Tsvetana, 2019. "Regional Income Distribution in the European Union: A Parametric Approach," Working papers 2019/18, Faculty of Business and Economics - University of Basel.
More about this item
Keywords
Grouped data; Income distribution; Markov Chain Monte Carlo; Pair-wise difference prior; Spatial smoothing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:145:y:2020:i:c:s0167947319302592. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.