IDEAS home Printed from https://ideas.repec.org/a/bla/ecorec/v89y2013ip48-66.html
   My bibliography  Save this article

Calculating Poverty Measures from the Generalised Beta Income Distribution

Author

Listed:
  • Duangkamon Chotikapanich
  • William Griffiths
  • Wasana Karunarathne
  • D.S. Prasada Rao

Abstract

Data for measuring poverty and income inequality are frequently available in a summary form that describes the proportion of income or expenditure for each of a number of population proportions. While various discrete measures can be applied directly to data in this limited form, these discrete measures typically ignore inequality within each group. This problem can be overcome by fitting a parametric income distribution to the grouped data and computing required quantities from the estimated parameters of this distribution. In this paper we show how to calculate several poverty measures from parameters of the generalized beta distribution of the second kind, and its popular special cases. An analysis of poverty changes in ten countries from South and Southeast Asia is used to illustrate the methodology.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Duangkamon Chotikapanich & William Griffiths & Wasana Karunarathne & D.S. Prasada Rao, 2013. "Calculating Poverty Measures from the Generalised Beta Income Distribution," The Economic Record, The Economic Society of Australia, vol. 89, pages 48-66, June.
  • Handle: RePEc:bla:ecorec:v:89:y:2013:i::p:48-66
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/1475-4932.12031
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Villasenor, JoseA. & Arnold, Barry C., 1989. "Elliptical Lorenz curves," Journal of Econometrics, Elsevier, vol. 40(2), pages 327-338, February.
    2. Branko Milanovic, 2002. "True World Income Distribution, 1988 and 1993: First Calculation Based on Household Surveys Alone," Economic Journal, Royal Economic Society, vol. 112(476), pages 51-92, January.
    3. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    4. Atkinson, A B, 1987. "On the Measurement of Poverty," Econometrica, Econometric Society, vol. 55(4), pages 749-764, July.
    5. Foster, James & Greer, Joel & Thorbecke, Erik, 1984. "A Class of Decomposable Poverty Measures," Econometrica, Econometric Society, vol. 52(3), pages 761-766, May.
    6. Parker, Simon C, 1999. "The Beta as a Model for the Distribution of Earnings," Bulletin of Economic Research, Wiley Blackwell, vol. 51(3), pages 243-251, July.
    7. Chotikapanich, Duangkamon & Griffiths, William E. & Rao, D. S. Prasada, 2007. "Estimating and Combining National Income Distributions Using Limited Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 97-109, January.
    8. Ray, Ranjan & Mishra, Ankita, 2012. "Multi-dimensional deprivation in the awakening giants: A comparison of China and India on micro data," Journal of Asian Economics, Elsevier, vol. 23(4), pages 454-465.
    9. David Madden, 2000. "Relative Or Absolute Poverty Lines: A New Approach," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 46(2), pages 181-199, June.
    10. François Bourguignon & Christian Morrisson, 2002. "Inequality Among World Citizens: 1820-1992," American Economic Review, American Economic Association, vol. 92(4), pages 727-744, September.
    11. repec:bla:revinw:v:46:y:2000:i:2:p:181-99 is not listed on IDEAS
    12. Ankita Mishra & Ranjan Ray, 2013. "Multi-Dimensional Deprivation in India During and After the Reforms: Do the Household Expenditure and the Family Health Surveys Present Consistent Evidence?," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 110(2), pages 791-818, January.
    13. Shaohua Chen & Martin Ravallion, 2010. "The Developing World is Poorer than We Thought, But No Less Successful in the Fight Against Poverty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(4), pages 1577-1625.
    14. Lars Osberg & Kuan Xu, 2008. "How Should We Measure Poverty in a Changing World? Methodological Issues and Chinese Case Study," Review of Development Economics, Wiley Blackwell, vol. 12(2), pages 419-441, May.
    15. Martin Ravallion & Shaohua Chen & Prem Sangraula, 2009. "Dollar a Day Revisited," The World Bank Economic Review, World Bank, vol. 23(2), pages 163-184, June.
    16. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 69(2), pages 427-428, October.
    17. Angus Deaton & Olivier Dupriez, 2011. "Purchasing Power Parity Exchange Rates for the Global Poor," American Economic Journal: Applied Economics, American Economic Association, vol. 3(2), pages 137-166, April.
    18. Aaron Nicholas & Ranjan Ray, 2012. "Duration and Persistence in Multidimensional Deprivation: Methodology and Australian Application," The Economic Record, The Economic Society of Australia, vol. 88(280), pages 106-126, March.
    19. Shaohua Chen & Martin Ravallion, 2004. "How Have the World's Poorest Fared since the Early 1980s?," The World Bank Research Observer, World Bank, vol. 19(2), pages 141-169.
    20. Duangkamon Chotikapanich & William E. Griffiths & D. S. Prasada Rao & Vicar Valencia, 2012. "Global Income Distributions and Inequality, 1993 and 2000: Incorporating Country-Level Inequality Modeled with Beta Distributions," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 52-73, February.
    21. Sen, Amartya K, 1976. "Poverty: An Ordinal Approach to Measurement," Econometrica, Econometric Society, vol. 44(2), pages 219-231, March.
    22. James B. McDonald & Michael Ransom, 2008. "The Generalized Beta Distribution as a Model for the Distribution of Income: Estimation of Related Measures of Inequality," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 8, pages 147-166, Springer.
    23. Parker, Simon C., 1999. "The generalised beta as a model for the distribution of earnings," Economics Letters, Elsevier, vol. 62(2), pages 197-200, February.
    24. Chen, Shaohua & Ravallion, Martin, 2007. "Absolute poverty measures for the developing world, 1981-2004," Policy Research Working Paper Series 4211, The World Bank.
    25. Ravallion, Martin, 2010. "Poverty lines across the world," Policy Research Working Paper Series 5284, The World Bank.
    26. Robert Ackland & Steve Dowrick & Benoit Freyens, 2013. "Measuring Global Poverty: Why PPP Methods Matter," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 813-824, July.
    27. Stephen P. Jenkins, 2009. "Distributionally‐Sensitive Inequality Indices And The Gb2 Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 55(2), pages 392-398, June.
    28. Gholamreza Hajargasht & William E. Griffiths & Joseph Brice & D.S. Prasada Rao & Duangkamon Chotikapanich, 2012. "Inference for Income Distributions Using Grouped Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 563-575, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & D. S. Prasada Rao & Charley Xia, 2018. "Inequality and Poverty in Africa: Comparing Panels of Income Distributions from Different Data Sources," Department of Economics - Working Papers Series 2042, The University of Melbourne.
    2. Brian A'Hearn & Nicola Amendola & Giovanni Vecchi, 2016. "On Historical Household Budgets," Rivista di storia economica, Società editrice il Mulino, issue 2, pages 137-176.
    3. Michał Brzeziński, 2013. "Parametric Modelling of Income Distribution in Central and Eastern Europe," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 5(3), pages 207-230, September.
    4. Callealta Barroso, Francisco Javier & García-Pérez, Carmelo & Prieto-Alaiz, Mercedes, 2020. "Modelling income distribution using the log Student’s t distribution: New evidence for European Union countries," Economic Modelling, Elsevier, vol. 89(C), pages 512-522.
    5. Chotikapanich, Duangkamon & Griffiths, William E. & Rao, D.S. Prasada & Karunarathne, Wasana, 2014. "Income Distributions, Inequality, and Poverty in Asia, 1992–2010," ADBI Working Papers 468, Asian Development Bank Institute.
    6. Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D. S. Prasada Rao, 2018. "Using the GB2 Income Distribution," Econometrics, MDPI, vol. 6(2), pages 1-24, April.
    7. Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D.S. Prasada Rao, 2018. "Using the GB2 Income Distribution: A Review," Department of Economics - Working Papers Series 2036, The University of Melbourne.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D. S. Prasada Rao, 2018. "Using the GB2 Income Distribution," Econometrics, MDPI, vol. 6(2), pages 1-24, April.
    2. David Warner & Prasada Rao & William E. Griffiths & Duangkamon Chotikapanich, 2011. "Global Inequality: Levels and Trends, 1993-2005," Discussion Papers Series 436, School of Economics, University of Queensland, Australia.
    3. Hajargasht, Gholamreza & Griffiths, William E., 2013. "Pareto–lognormal distributions: Inequality, poverty, and estimation from grouped income data," Economic Modelling, Elsevier, vol. 33(C), pages 593-604.
    4. Dhongde, Shatakshee & Minoiu, Camelia, 2013. "Global Poverty Estimates: A Sensitivity Analysis," World Development, Elsevier, vol. 44(C), pages 1-13.
    5. Gholamreza Hajargsht & William E. Griffiths & Joseph Brice & D.S. Prasada Rao & Duangkamon Chotikapanich, 2011. "GMM Estimation of Income Distributions from Grouped Data," Department of Economics - Working Papers Series 1129, The University of Melbourne.
    6. Chotikapanich, Duangkamon & Griffiths, William E. & Rao, D.S. Prasada & Karunarathne, Wasana, 2014. "Income Distributions, Inequality, and Poverty in Asia, 1992–2010," ADBI Working Papers 468, Asian Development Bank Institute.
    7. Michał Brzeziński, 2013. "Parametric Modelling of Income Distribution in Central and Eastern Europe," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 5(3), pages 207-230, September.
    8. Camelia Minoiu & Sanjay Reddy, 2014. "Kernel density estimation on grouped data: the case of poverty assessment," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 12(2), pages 163-189, June.
    9. Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D.S. Prasada Rao, 2018. "Using the GB2 Income Distribution: A Review," Department of Economics - Working Papers Series 2036, The University of Melbourne.
    10. Jordá, Vanesa & Niño-Zarazúa, Miguel, 2019. "Global inequality: How large is the effect of top incomes?," World Development, Elsevier, vol. 123(C), pages 1-1.
    11. David Warner & D. S. Prasada Rao & William E. Griffiths & Duangkamon Chotikapanich, 2014. "Global Inequality; Levels and Trends, 1993–2005: How Sensitive are These to the Choice of PPPs and Real Income Measures?," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(S2), pages 281-304, November.
    12. Ferreira, Francisco H.G. & Ravallion, Martin, 2008. "Global poverty and inequality : a review of the evidence," Policy Research Working Paper Series 4623, The World Bank.
    13. Martin Ravallion & Shaohua Chen, 2011. "Weakly Relative Poverty," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1251-1261, November.
    14. Facundo Alvaredo & Leonardo Gasparini, 2013. "Recent Trends in Inequality and Poverty in Developing Countries," CEDLAS, Working Papers 0151, CEDLAS, Universidad Nacional de La Plata.
    15. Gholamreza Hajargasht & William E. Griffiths & Joseph Brice & D.S. Prasada Rao & Duangkamon Chotikapanich, 2012. "Inference for Income Distributions Using Grouped Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 563-575, May.
    16. Walter, Paul & Weimer, Katja, 2018. "Estimating poverty and inequality indicators using interval censored income data from the German microcensus," Discussion Papers 2018/10, Free University Berlin, School of Business & Economics.
    17. Marchand, J. & Smeeding, T., 2016. "Poverty and Aging," Handbook of the Economics of Population Aging, in: Piggott, John & Woodland, Alan (ed.), Handbook of the Economics of Population Aging, edition 1, volume 1, chapter 0, pages 905-950, Elsevier.
      • Marchand, Joseph & Smeeding, Timothy, 2016. "Poverty and Aging," Working Papers 2016-11, University of Alberta, Department of Economics, revised 20 Nov 2016.
    18. Boccanfuso, Dorothée & Richard, Patrick & Savard, Luc, 2013. "Parametric and nonparametric income distribution estimators in CGE micro-simulation modeling," Economic Modelling, Elsevier, vol. 35(C), pages 892-899.
    19. Kazuhiko Kakamu & Haruhisa Nishino, 2019. "Bayesian Estimation of Beta-type Distribution Parameters Based on Grouped Data," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 625-645, August.
    20. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.

    More about this item

    JEL classification:

    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty
    • O15 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Economic Development: Human Resources; Human Development; Income Distribution; Migration
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ecorec:v:89:y:2013:i::p:48-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/esausea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.