Estimating Income Distributions From Grouped Data: A Minimum Quantile Distance Approach
Author
Abstract
Suggested Citation
DOI: 10.1007/s10614-023-10505-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chotikapanich, Duangkamon & Griffiths, William E. & Rao, D. S. Prasada, 2007.
"Estimating and Combining National Income Distributions Using Limited Data,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 97-109, January.
- D.S. Prasada Rao & Duangkamon Chotikapanich & William E. Griffiths, 2004. "Estimating and Combining National Income Distributions using Limited Data," Econometric Society 2004 Australasian Meetings 213, Econometric Society.
- Duangkamon Chotikapanich & William E. Griffiths & D.S. Prasada Rao, 2005. "Estimating and Combining National Income Distributions using Limited Data," Department of Economics - Working Papers Series 926, The University of Melbourne.
- Camelia Minoiu & Sanjay Reddy, 2014. "Kernel density estimation on grouped data: the case of poverty assessment," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 12(2), pages 163-189, June.
- Tobias Eckernkemper & Bastian Gribisch, 2021. "Classical and Bayesian Inference for Income Distributions using Grouped Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(1), pages 32-65, February.
- Xavier Sala-i-Martin, 2006. "The World Distribution of Income: Falling Poverty and … Convergence, Period," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(2), pages 351-397.
- Max Jöhnk & Stefan Niermann, 2002. "Parameter estimation with grouped data according to the linearization method — a comparison with alternative approaches," Statistical Papers, Springer, vol. 43(2), pages 237-255, April.
- Gholamreza Hajargasht & William E. Griffiths & Joseph Brice & D.S. Prasada Rao & Duangkamon Chotikapanich, 2012.
"Inference for Income Distributions Using Grouped Data,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 563-575, May.
- Gholamreza Hajargsht, William E. Griffiths, Joseph Brice, D.S. Prasada Rao, Duangkamon Chotikapanich, 2012. "Inference for Income Distributions Using Grouped Data," Department of Economics - Working Papers Series 1140, The University of Melbourne.
- Gholamreza Hajargasht & William E. Griffiths, 2020. "Minimum distance estimation of parametric Lorenz curves based on grouped data," Econometric Reviews, Taylor & Francis Journals, vol. 39(4), pages 344-361, April.
- James B. McDonald, 2008.
"Some Generalized Functions for the Size Distribution of Income,"
Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55,
Springer.
- McDonald, James B, 1984. "Some Generalized Functions for the Size Distribution of Income," Econometrica, Econometric Society, vol. 52(3), pages 647-663, May.
- Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D.S. Prasada Rao, 2018. "Using the GB2 Income Distribution: A Review," Department of Economics - Working Papers Series 2036, The University of Melbourne.
- McDonald, James B & Ransom, Michael R, 1979. "Functional Forms, Estimation Techniques and the Distribution of Income," Econometrica, Econometric Society, vol. 47(6), pages 1513-1525, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vanesa Jorda & José María Sarabia & Markus Jäntti, 2021. "Inequality measurement with grouped data: Parametric and non‐parametric methods," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 964-984, July.
- Mathias Silva, 2023.
"Parametric estimation of income distributions using grouped data: an Approximate Bayesian Computation approach [Working Papers / Documents de travail],"
Working Papers
hal-04066544, HAL.
- Mathias Silva, 2023. "Parametric estimation of income distributions using grouped data: an Approximate Bayesian Computation approach," AMSE Working Papers 2310, Aix-Marseille School of Economics, France.
- Chotikapanich, Duangkamon & Griffiths, William E. & Rao, D.S. Prasada & Karunarathne, Wasana, 2014. "Income Distributions, Inequality, and Poverty in Asia, 1992–2010," ADBI Working Papers 468, Asian Development Bank Institute.
- Tobias Eckernkemper & Bastian Gribisch, 2021. "Classical and Bayesian Inference for Income Distributions using Grouped Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(1), pages 32-65, February.
- David Warner & Prasada Rao & William E. Griffiths & Duangkamon Chotikapanich, 2011. "Global Inequality: Levels and Trends, 1993-2005," Discussion Papers Series 436, School of Economics, University of Queensland, Australia.
- Lee, Ji Hyung & Sasaki, Yuya & Toda, Alexis Akira & Wang, Yulong, 2024.
"Tuning parameter-free nonparametric density estimation from tabulated summary data,"
Journal of Econometrics, Elsevier, vol. 238(1).
- Ji Hyung Lee & Yuya Sasaki & Alexis Akira Toda & Yulong Wang, 2022. "Tuning Parameter-Free Nonparametric Density Estimation from Tabulated Summary Data," Papers 2204.05480, arXiv.org, revised May 2023.
- Mathias Silva, 2023.
"Parametric models of income distributions integrating misreporting and non-response mechanisms,"
AMSE Working Papers
2311, Aix-Marseille School of Economics, France.
- Mathias Silva, 2023. "Parametric models of income distributions integrating misreporting and non-response mechanisms," Working Papers hal-04093646, HAL.
- Vladimir Hlasny, 2021.
"Parametric representation of the top of income distributions: Options, historical evidence, and model selection,"
Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
- Vladimir Hlasny, 2020. "Parametric Representation of the Top of Income Distributions: Options, Historical Evidence and Model Selection," Working Papers 547, ECINEQ, Society for the Study of Economic Inequality.
- Vladimir Hlasny, 2020. "Parametric Representation of the Top of Income Distributions: Options, Historical Evidence and Model Selection," Commitment to Equity (CEQ) Working Paper Series 90, Tulane University, Department of Economics.
- Camelia Minoiu & Sanjay Reddy, 2014. "Kernel density estimation on grouped data: the case of poverty assessment," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 12(2), pages 163-189, June.
- Fernández-Morales, Antonio, 2016. "Measuring poverty with the Foster, Greer and Thorbecke indexes based on the Gamma distribution," MPRA Paper 69648, University Library of Munich, Germany.
- Sung Y. Park & Anil K. Bera, 2018.
"Information theoretic approaches to income density estimation with an application to the U.S. income data,"
The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 461-486, December.
- Sung Y. Park & Anil K. Bera, 2018. "Information theoretic approaches to income density estimation with an application to the U.S. income data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 461-486, December.
- Griffiths, William & Hajargasht, Gholamreza, 2015. "On GMM estimation of distributions from grouped data," Economics Letters, Elsevier, vol. 126(C), pages 122-126.
- Kazuhiko Kakamu, 2022. "Bayesian analysis of mixtures of lognormal distribution with an unknown number of components from grouped data," Papers 2210.05115, arXiv.org, revised Sep 2023.
- Tsvetana Spasova, 2019.
"Regional Income Distribution in the European Union: A Parametric Approach,"
Research on Economic Inequality, in: What Drives Inequality?, volume 27, pages 1-18,
Emerald Group Publishing Limited.
- Spasova, Tsvetana, 2019. "Regional Income Distribution in the European Union: A Parametric Approach," Working papers 2019/18, Faculty of Business and Economics - University of Basel.
- Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D. S. Prasada Rao, 2018. "Using the GB2 Income Distribution," Econometrics, MDPI, vol. 6(2), pages 1-24, April.
- Jordá, Vanesa & Niño-Zarazúa, Miguel, 2019.
"Global inequality: How large is the effect of top incomes?,"
World Development, Elsevier, vol. 123(C), pages 1-1.
- Vanesa Jorda & Miguel Niño-Zarazúa, 2016. "Global inequality: How large is the effect of top incomes?," WIDER Working Paper Series wp-2016-94, World Institute for Development Economic Research (UNU-WIDER).
- Duangkamon Chotikapanich & D. S. Prasada Rao & Kam Ki Tang, 2007.
"Estimating Income Inequality In China Using Grouped Data And The Generalized Beta Distribution,"
Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 53(1), pages 127-147, March.
- Duangkamon Chotikapanich & D. S. Prasada Rao & Kam Ki Tang, 2006. "Estimating Income Inequality in China Using Grouped Data and the Generalized Beta Distribution," WIDER Working Paper Series RP2006-134, World Institute for Development Economic Research (UNU-WIDER).
- Kazuhiko Kakamu, 2016. "Simulation Studies Comparing Dagum and Singh–Maddala Income Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 593-605, December.
- Gholamreza Hajargasht & William E. Griffiths & Joseph Brice & D.S. Prasada Rao & Duangkamon Chotikapanich, 2012.
"Inference for Income Distributions Using Grouped Data,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 563-575, May.
- Gholamreza Hajargsht, William E. Griffiths, Joseph Brice, D.S. Prasada Rao, Duangkamon Chotikapanich, 2012. "Inference for Income Distributions Using Grouped Data," Department of Economics - Working Papers Series 1140, The University of Melbourne.
- Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D.S. Prasada Rao, 2018. "Using the GB2 Income Distribution: A Review," Department of Economics - Working Papers Series 2036, The University of Melbourne.
More about this item
Keywords
Minimum quantile distance; Maximum likelihood technique; Income distributions; Grouped data; GB2 distribution;All these keywords.
JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
- D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:64:y:2024:i:4:d:10.1007_s10614-023-10505-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.