IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v29y2019i3p928-966.html
   My bibliography  Save this article

The short‐time behavior of VIX‐implied volatilities in a multifactor stochastic volatility framework

Author

Listed:
  • Andrea Barletta
  • Elisa Nicolato
  • Stefano Pagliarani

Abstract

We consider a modeling setup where the volatility index (VIX) dynamics are explicitly computable as a smooth transformation of a purely diffusive, multidimensional Markov process. The framework is general enough to embed many popular stochastic volatility models. We develop closed‐form expansions and sharp error bounds for VIX futures, options, and implied volatilities. In particular, we derive exact asymptotic results for VIX‐implied volatilities, and their sensitivities, in the joint limit of short time‐to‐maturity and small log‐moneyness. The expansions obtained are explicit based on elementary functions and they neatly uncover how the VIX skew depends on the specific choice of the volatility and the vol‐of‐vol processes. Our results are based on perturbation techniques applied to the infinitesimal generator of the underlying process. This methodology has previously been adopted to derive approximations of equity (SPX) options. However, the generalizations needed to cover the case of VIX options are by no means straightforward as the dynamics of the underlying VIX futures are not explicitly known. To illustrate the accuracy of our technique, we provide numerical implementations for a selection of model specifications.

Suggested Citation

  • Andrea Barletta & Elisa Nicolato & Stefano Pagliarani, 2019. "The short‐time behavior of VIX‐implied volatilities in a multifactor stochastic volatility framework," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 928-966, July.
  • Handle: RePEc:bla:mathfi:v:29:y:2019:i:3:p:928-966
    DOI: 10.1111/mafi.12196
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12196
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jan Baldeaux & Alexander Badran, 2014. "Consistent Modelling of VIX and Equity Derivatives Using a 3/2 plus Jumps Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(4), pages 299-312, September.
    2. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    3. Rama Cont & Thomas Kokholm, 2013. "A Consistent Pricing Model For Index Options And Volatility Derivatives," Post-Print hal-00801536, HAL.
    4. Grassi, Stefano & Santucci de Magistris, Paolo, 2015. "It's all about volatility of volatility: Evidence from a two-factor stochastic volatility model," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 62-78.
    5. Jaume Masoliver & Josep Perello, 2006. "Multiple time scales and the exponential Ornstein-Uhlenbeck stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 423-433.
    6. Alexander Badran & Beniamin Goldys, 2015. "A Market Model for VIX Futures," Papers 1504.00428, arXiv.org.
    7. Peter Carr & Jian Sun, 2007. "A new approach for option pricing under stochastic volatility," Review of Derivatives Research, Springer, vol. 10(2), pages 87-150, May.
    8. E. Benhamou & E. Gobet & M. Miri, 2009. "Smart expansion and fast calibration for jump diffusions," Finance and Stochastics, Springer, vol. 13(4), pages 563-589, September.
    9. Bujar Huskaj & Marcus Nossman, 2013. "A Term Structure Model for VIX Futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(5), pages 421-442, May.
    10. Hans Buehler, 2006. "Consistent Variance Curve Models," Finance and Stochastics, Springer, vol. 10(2), pages 178-203, April.
    11. Jean-Pierre Fouque & Yuri F. Saporito & Jorge P. Zubelli, 2014. "Multiscale Stochastic Volatility Model For Derivatives On Futures," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(07), pages 1-31.
    12. Peter Carr & Dilip B. Madan, 2014. "Joint modeling of VIX and SPX options at a single and common maturity with risk management applications," IISE Transactions, Taylor & Francis Journals, vol. 46(11), pages 1125-1131, November.
    13. Francesco Caravenna & Jacopo Corbetta, 2015. "The asymptotic smile of a multiscaling stochastic volatility model," Papers 1501.03387, arXiv.org, revised Jul 2017.
    14. Alexey Medvedev & Olivier Scaillet, 2007. "Approximation and Calibration of Short-Term Implied Volatilities Under Jump-Diffusion Stochastic Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 20(2), pages 427-459.
    15. Andrey Itkin, 2013. "New solvable stochastic volatility models for pricing volatility derivatives," Review of Derivatives Research, Springer, vol. 16(2), pages 111-134, July.
    16. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2010. "Volatility Dynamics for the S&P500: Evidence from Realized Volatility, Daily Returns, and Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3141-3189, August.
    17. Elisa Alòs & Jorge León & Josep Vives, 2007. "On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility," Finance and Stochastics, Springer, vol. 11(4), pages 571-589, October.
    18. Tim Leung & Matthew Lorig & Andrea Pascucci, 2017. "Leveraged Etf Implied Volatilities From Etf Dynamics," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 1035-1068, October.
    19. Josep Perello & Ronnie Sircar & Jaume Masoliver, 2008. "Option pricing under stochastic volatility: the exponential Ornstein-Uhlenbeck model," Papers 0804.2589, arXiv.org, revised May 2008.
    20. Valdo Durrleman, 2010. "From implied to spot volatilities," Finance and Stochastics, Springer, vol. 14(2), pages 157-177, April.
    21. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    22. Patrick Hagan & Diana Woodward, 1999. "Equivalent Black volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(3), pages 147-157.
    23. Stefano Pagliarani & Andrea Pascucci, 2017. "The exact Taylor formula of the implied volatility," Finance and Stochastics, Springer, vol. 21(3), pages 661-718, July.
    24. Gabriel G. Drimus, 2012. "Options on realized variance by transform methods: a non-affine stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1679-1694, November.
    25. Gabriel G. Drimus, 2012. "Options on Realized Variance in Log-OU Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(5), pages 477-494, November.
    26. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2017. "Explicit Implied Volatilities For Multifactor Local-Stochastic Volatility Models," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 926-960, July.
    27. Christian Bayer & Jim Gatheral & Morten Karlsmark, 2013. "Fast Ninomiya--Victoir calibration of the double-mean-reverting model," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1813-1829, November.
    28. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
    29. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    30. Francesco Caravenna & Jacopo Corbetta, 2014. "General smile asymptotics with bounded maturity," Papers 1411.1624, arXiv.org, revised Jul 2016.
    31. Dilip Madan & Marc Yor, 2011. "The S&P 500 Index as a Sato Process Travelling at the Speed of the VIX," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(3), pages 227-244.
    32. Martin Forde & Antoine Jacquier, 2011. "The large-maturity smile for the Heston model," Finance and Stochastics, Springer, vol. 15(4), pages 755-780, December.
    33. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    34. Kaeck, Andreas & Alexander, Carol, 2013. "Continuous-time VIX dynamics: On the role of stochastic volatility of volatility," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 46-56.
    35. Han, Chuan-Hsiang & Molina, German & Fouque, Jean-Pierre, 2014. "McMC estimation of multiscale stochastic volatility models with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 103(C), pages 1-11.
    36. Hans Buehler, 2006. "Consistent Variance Curve Models," Finance and Stochastics, Springer, vol. 10(2), pages 178-203, April.
    37. K. Ronnie Sircar & George Papanicolaou, 1999. "Stochastic volatility, smile & asymptotics," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(2), pages 107-145.
    38. J.-P. Fouque & Y. F. Saporito, 2018. "Heston stochastic vol-of-vol model for joint calibration of VIX and S&P 500 options," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 1003-1016, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mora-Valencia, Andrés & Rodríguez-Raga, Santiago & Vanegas, Esteban, 2021. "Skew index: Descriptive analysis, predictive power, and short-term forecast," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    2. Matthew Lorig & Natchanon Suaysom, 2022. "Explicit Caplet Implied Volatilities for Quadratic Term-Structure Models," Papers 2212.04425, arXiv.org.
    3. Takuji Arai, 2019. "Pricing And Hedging Of Vix Options For Barndorff-Nielsen And Shephard Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-26, December.
    4. Huy N. Chau & Duy Nguyen & Thai Nguyen, 2024. "On short-time behavior of implied volatility in a market model with indexes," Papers 2402.16509, arXiv.org, revised Apr 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    2. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    3. Andrew Papanicolaou, 2018. "Consistent Time-Homogeneous Modeling of SPX and VIX Derivatives," Papers 1812.05859, arXiv.org, revised Mar 2022.
    4. Andrew Papanicolaou, 2022. "Consistent time‐homogeneous modeling of SPX and VIX derivatives," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 907-940, July.
    5. Wendong Zheng & Pingping Zeng, 2015. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Papers 1504.08136, arXiv.org.
    6. Wendong Zheng & Pingping Zeng, 2016. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 344-373, September.
    7. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching stochastic volatility model: estimation and calibration to VIX options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(1), pages 38-75, January.
    8. Barletta, Andrea & Santucci de Magistris, Paolo & Violante, Francesco, 2019. "A non-structural investigation of VIX risk neutral density," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 1-20.
    9. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching Stochastic Volatility Model : Estimation and Calibration to VIX options," Working Papers hal-01212018, HAL.
    10. Chenxu Li, 2014. "Closed-Form Expansion, Conditional Expectation, and Option Valuation," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 487-516, May.
    11. Liexin Cheng & Xue Cheng & Xianhua Peng, 2024. "Joint Calibration to SPX and VIX Derivative Markets with Composite Change of Time Models," Papers 2404.16295, arXiv.org, revised Aug 2024.
    12. Andrea Barletta & Paolo Santucci de Magistris & Francesco Violante, 2016. "Retrieving Risk-Neutral Densities Embedded in VIX Options: a Non-Structural Approach," CREATES Research Papers 2016-20, Department of Economics and Business Economics, Aarhus University.
    13. Andrew Papanicolaou, 2021. "Extreme-Strike Comparisons and Structural Bounds for SPX and VIX Options," Papers 2101.00299, arXiv.org, revised Mar 2021.
    14. Andrew Papanicolaou & Ronnie Sircar, 2014. "A regime-switching Heston model for VIX and S&P 500 implied volatilities," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1811-1827, October.
    15. Recchioni, Maria Cristina & Iori, Giulia & Tedeschi, Gabriele & Ouellette, Michelle S., 2021. "The complete Gaussian kernel in the multi-factor Heston model: Option pricing and implied volatility applications," European Journal of Operational Research, Elsevier, vol. 293(1), pages 336-360.
    16. Xingguo Luo & Jin E. Zhang & Wenjun Zhang, 2019. "Instantaneous squared VIX and VIX derivatives," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(10), pages 1193-1213, October.
    17. Chi Hung Yuen & Wendong Zheng & Yue Kuen Kwok, 2015. "Pricing Exotic Discrete Variance Swaps under the 3/2-Stochastic Volatility Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(5), pages 421-449, November.
    18. Jacquier, Antoine & Roome, Patrick, 2016. "Large-maturity regimes of the Heston forward smile," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1087-1123.
    19. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    20. Bardgett, Chris & Gourier, Elise & Leippold, Markus, 2019. "Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets," Journal of Financial Economics, Elsevier, vol. 131(3), pages 593-618.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:29:y:2019:i:3:p:928-966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.