IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1504.00428.html
   My bibliography  Save this paper

A Market Model for VIX Futures

Author

Listed:
  • Alexander Badran
  • Beniamin Goldys

Abstract

A new modelling approach that directly prescribes dynamics to the term structure of VIX futures is proposed in this paper. The approach is motivated by the tractability enjoyed by models that directly prescribe dynamics to the VIX, practices observed in interest-rate modelling, and the desire to develop a platform to better understand VIX option implied volatilities. The main contribution of the paper is the derivation of necessary conditions for there to be no arbitrage between the joint market of VIX and equity derivatives. The arbitrage conditions are analogous to the well-known HJM drift restrictions in interest-rate modelling. The restrictions also address a fundamental open problem related to an existing modelling approach, in which the dynamics of the VIX are specified directly. The paper is concluded with an application of the main result, which demonstrates that when modelling VIX futures directly, the drift and diffusion of the corresponding stochastic volatility model must be restricted to preclude arbitrage.

Suggested Citation

  • Alexander Badran & Beniamin Goldys, 2015. "A Market Model for VIX Futures," Papers 1504.00428, arXiv.org.
  • Handle: RePEc:arx:papers:1504.00428
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1504.00428
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan Baldeaux & Alexander Badran, 2014. "Consistent Modelling of VIX and Equity Derivatives Using a 3/2 plus Jumps Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(4), pages 299-312, September.
    2. Andreas Kaeck & Carol Alexander, 2010. "VIX Dynamics with Stochastic Volatility of Volatility," ICMA Centre Discussion Papers in Finance icma-dp2010-11, Henley Business School, University of Reading.
    3. Jin E. Zhang & Yingzi Zhu, 2006. "VIX futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(6), pages 521-531, June.
    4. Grunbichler, Andreas & Longstaff, Francis A., 1996. "Valuing futures and options on volatility," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 985-1001, July.
    5. Hans Buehler, 2006. "Consistent Variance Curve Models," Finance and Stochastics, Springer, vol. 10(2), pages 178-203, April.
    6. Song‐Ping Zhu & Guang‐Hua Lian, 2012. "An analytical formula for VIX futures and its applications," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(2), pages 166-190, February.
    7. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    8. Hans Buehler, 2006. "Consistent Variance Curve Models," Finance and Stochastics, Springer, vol. 10(2), pages 178-203, April.
    9. Dimitris Psychoyios & George Dotsis & Raphael Markellos, 2010. "A jump diffusion model for VIX volatility options and futures," Review of Quantitative Finance and Accounting, Springer, vol. 35(3), pages 245-269, October.
    10. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    11. Alexander Cox & David Hobson, 2005. "Local martingales, bubbles and option prices," Finance and Stochastics, Springer, vol. 9(4), pages 477-492, October.
    12. Peter Carr & Jian Sun, 2007. "A new approach for option pricing under stochastic volatility," Review of Derivatives Research, Springer, vol. 10(2), pages 87-150, May.
    13. Guang-Hua Lian & Song-Ping Zhu, 2013. "Pricing VIX options with stochastic volatility and random jumps," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 36(1), pages 71-88, May.
    14. Jan Baldeaux & Alexander Badran, 2012. "Consistent Modeling of VIX and Equity Derivatives Using a 3/2 Plus Jumps Model," Research Paper Series 306, Quantitative Finance Research Centre, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Barletta & Elisa Nicolato & Stefano Pagliarani, 2019. "The short‐time behavior of VIX‐implied volatilities in a multifactor stochastic volatility framework," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 928-966, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Papanicolaou, 2018. "Consistent Time-Homogeneous Modeling of SPX and VIX Derivatives," Papers 1812.05859, arXiv.org, revised Mar 2022.
    2. Daniel Guterding, 2020. "Inventory effects on the price dynamics of VSTOXX futures quantified via machine learning," Papers 2002.08207, arXiv.org.
    3. Li, Jing & Li, Lingfei & Zhang, Gongqiu, 2017. "Pure jump models for pricing and hedging VIX derivatives," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 28-55.
    4. Andrea Barletta & Elisa Nicolato & Stefano Pagliarani, 2019. "The short‐time behavior of VIX‐implied volatilities in a multifactor stochastic volatility framework," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 928-966, July.
    5. Andrew Papanicolaou, 2022. "Consistent time‐homogeneous modeling of SPX and VIX derivatives," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 907-940, July.
    6. Changfu Ma & Wei Xu & Yue Kuen Kwok, 2020. "Willow tree algorithms for pricing VIX derivatives under stochastic volatility models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 1-28, March.
    7. Wei Lin & Shenghong Li & Xingguo Luo & Shane Chern, 2015. "Consistent Pricing of VIX and Equity Derivatives with the 4/2 Stochastic Volatility Plus Jumps Model," Papers 1510.01172, arXiv.org, revised Nov 2015.
    8. Ivan Guo & Gregoire Loeper, 2016. "Pricing Bounds for VIX Derivatives via Least Squares Monte Carlo," Papers 1611.00464, arXiv.org.
    9. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching stochastic volatility model: estimation and calibration to VIX options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(1), pages 38-75, January.
    10. Ma, Jingtang & Li, Wenyuan & Han, Xu, 2015. "Stochastic lattice models for valuation of volatility options," Economic Modelling, Elsevier, vol. 47(C), pages 93-104.
    11. Zhigang Tong, 2017. "Modelling VIX and VIX derivatives with reducible diffusions," International Journal of Bonds and Derivatives, Inderscience Enterprises Ltd, vol. 3(2), pages 153-175.
    12. Wei Lin & Shenghong Li & Shane Chern, 2017. "Pricing VIX Derivatives With Free Stochastic Volatility Model," Papers 1703.06020, arXiv.org.
    13. Gonzalez-Perez, Maria T., 2015. "Model-free volatility indexes in the financial literature: A review," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 141-159.
    14. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching Stochastic Volatility Model : Estimation and Calibration to VIX options," Working Papers hal-01212018, HAL.
    15. Wei Lin & Shenghong Li & Shane Chern & Jin E. Zhang, 2019. "Pricing VIX derivatives with free stochastic volatility model," Review of Derivatives Research, Springer, vol. 22(1), pages 41-75, April.
    16. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing, vol. 16(1), pages 27-48, January.
    17. Pacati, Claudio & Pompa, Gabriele & Renò, Roberto, 2018. "Smiling twice: The Heston++ model," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 185-206.
    18. Bo Jing & Shenghong Li & Yong Ma, 2020. "Pricing VIX options with volatility clustering," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(6), pages 928-944, June.
    19. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    20. Chenxu Li, 2014. "Closed-Form Expansion, Conditional Expectation, and Option Valuation," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 487-516, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1504.00428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.