IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v17y2014i07ns0219024914500435.html
   My bibliography  Save this article

Multiscale Stochastic Volatility Model For Derivatives On Futures

Author

Listed:
  • JEAN-PIERRE FOUQUE

    (Department of Statistics and Applied Probability, University of California, Santa Barbara, 552 University Road, Santa Barbara, California 93106-3110, USA)

  • YURI F. SAPORITO

    (Department of Statistics and Applied Probability, University of California, Santa Barbara, 552 University Road, Santa Barbara, California 93106-3110, USA)

  • JORGE P. ZUBELLI

    (IMPA (Instituto de Matemática Pura e Aplicada), Estrada Dona Castorina 110, Rio de Janeiro, Rio de Janeiro 22460-320, Brazil)

Abstract

In this paper, we present a new method for computing the first-order approximation of the price of derivatives on futures in the context of multiscale stochastic volatility studied in Fouque et al. (2011). It provides an alternative method to the singular perturbation technique presented in Hikspoors & Jaimungal (2008). The main features of our method are twofold: firstly, it does not rely on any additional hypothesis on the regularity of the payoff function, and secondly, it allows an effective and straightforward calibration procedure of the group market parameters to implied volatilities. These features were not achieved in previous works. Moreover, the central argument of our method could be applied to interest rate derivatives and compound derivatives. The only pre-requisite of our approach is the first-order approximation of the underlying derivative. Furthermore, the model proposed here is well-suited for commodities since it incorporates mean reversion of the spot price and multiscale stochastic volatility. Indeed, the model was validated by calibrating the group market parameters to options on crude-oil futures, and it displays a very good fit of the implied volatility.

Suggested Citation

  • Jean-Pierre Fouque & Yuri F. Saporito & Jorge P. Zubelli, 2014. "Multiscale Stochastic Volatility Model For Derivatives On Futures," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(07), pages 1-31.
  • Handle: RePEc:wsi:ijtafx:v:17:y:2014:i:07:n:s0219024914500435
    DOI: 10.1142/S0219024914500435
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024914500435
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024914500435?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fouque,Jean-Pierre & Papanicolaou,George & Sircar,Ronnie & Sølna,Knut, 2011. "Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives," Cambridge Books, Cambridge University Press, number 9780521843584.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Pierre Fouque & Sebastian Jaimungal & Yuri F. Saporito, 2021. "Optimal Trading with Signals and Stochastic Price Impact," Papers 2101.10053, arXiv.org, revised Aug 2023.
    2. Andrea Barletta & Elisa Nicolato & Stefano Pagliarani, 2019. "The short‐time behavior of VIX‐implied volatilities in a multifactor stochastic volatility framework," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 928-966, July.
    3. J.-P. Fouque & Y. F. Saporito, 2018. "Heston stochastic vol-of-vol model for joint calibration of VIX and S&P 500 options," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 1003-1016, June.
    4. Min-Ku LEE & Sung-Jin YANG, PhD & Jeong-Hoon KIM, 2017. "Pricing Vulnerable Options with Constant Elasticity of Variance versus Stochastic Elasticity of Variance," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(1), pages 233-247.
    5. Łukasz Delong, 2019. "Optimal investment for insurance company with exponential utility and wealth-dependent risk aversion coefficient," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(1), pages 73-113, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    2. Archil Gulisashvili & Peter Laurence, 2013. "The Heston Riemannian distance function," Papers 1302.2337, arXiv.org.
    3. Tsekrekos, Andrianos E. & Yannacopoulos, Athanasios N., 2016. "Optimal switching decisions under stochastic volatility with fast mean reversion," European Journal of Operational Research, Elsevier, vol. 251(1), pages 148-157.
    4. Cao, Jiling & Kim, Jeong-Hoon & Liu, Wenqiang & Zhang, Wenjun, 2023. "Rescaling the double-mean-reverting 4/2 stochastic volatility model for derivative pricing," Finance Research Letters, Elsevier, vol. 58(PB).
    5. Antoine Jacquier & Konstantinos Spiliopoulos, 2018. "Pathwise moderate deviations for option pricing," Papers 1803.04483, arXiv.org, revised Dec 2018.
    6. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2017. "Explicit Implied Volatilities For Multifactor Local-Stochastic Volatility Models," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 926-960, July.
    7. Jaegi Jeon & Geonwoo Kim & Jeonggyu Huh, 2019. "Consistent and Efficient Pricing of SPX and VIX Options under Multiscale Stochastic Volatility," Papers 1909.10187, arXiv.org.
    8. Bruno Bouchard & Ludovic Moreau & Mete H. Soner, 2016. "Hedging under an expected loss constraint with small transaction costs," Post-Print hal-00863562, HAL.
    9. Cao, Jiling & Kim, Jeong-Hoon & Li, Xi & Zhang, Wenjun, 2023. "Valuation of barrier and lookback options under hybrid CEV and stochastic volatility," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 660-676.
    10. Zhang, Sumei & Gao, Xiong, 2019. "An asymptotic expansion method for geometric Asian options pricing under the double Heston model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 1-9.
    11. Mnacho Echenim & Emmanuel Gobet & Anne-Claire Maurice, 2022. "Unbiasing and robustifying implied volatility calibration in a cryptocurrency market with large bid-ask spreads and missing quotes," Papers 2207.02989, arXiv.org.
    12. Maxim Bichuch & Jean-Pierre Fouque, 2019. "Optimal Investment with Correlated Stochastic Volatility Factors," Papers 1908.07626, arXiv.org, revised Nov 2022.
    13. repec:hal:wpaper:hal-03715921 is not listed on IDEAS
    14. J.-P. Fouque & Y. F. Saporito, 2018. "Heston stochastic vol-of-vol model for joint calibration of VIX and S&P 500 options," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 1003-1016, June.
    15. Petra F. A. Dilling, 2016. "Reporting on Long-Term Value Creation—The Example of Public Canadian Energy and Mining Companies," Sustainability, MDPI, vol. 8(9), pages 1-26, September.
    16. Garnier, Josselin & Solna, Knut, 2019. "Chaos and order in the bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 708-721.
    17. Qi Feng & Jianfeng Zhang, 2021. "Cubature Method for Stochastic Volterra Integral Equations," Papers 2110.12853, arXiv.org, revised Jul 2023.
    18. Chuan-Hsiang Han & Wei-Han Liu & Tzu-Ying Chen, 2014. "VaR/CVaR ESTIMATION UNDER STOCHASTIC VOLATILITY MODELS," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(02), pages 1-35.
    19. Vladimir Pozdnyakov & L. Mark Elbroch & Anthony Labarga & Thomas Meyer & Jun Yan, 2019. "Discretely Observed Brownian Motion Governed by Telegraph Process: Estimation," Methodology and Computing in Applied Probability, Springer, vol. 21(3), pages 907-920, September.
    20. Seo, Jun-Ho & Kim, Jeong-Hoon, 2022. "Multiscale stochastic elasticity of variance for options and equity linked annuity; A Mellin transform approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 303-320.
    21. Pun, Chi Seng & Wong, Hoi Ying, 2015. "Robust investment–reinsurance optimization with multiscale stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 245-256.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:17:y:2014:i:07:n:s0219024914500435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.