IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v17y2014i07ns0219024914500435.html
   My bibliography  Save this article

Multiscale Stochastic Volatility Model For Derivatives On Futures

Author

Listed:
  • JEAN-PIERRE FOUQUE

    (Department of Statistics and Applied Probability, University of California, Santa Barbara, 552 University Road, Santa Barbara, California 93106-3110, USA)

  • YURI F. SAPORITO

    (Department of Statistics and Applied Probability, University of California, Santa Barbara, 552 University Road, Santa Barbara, California 93106-3110, USA)

  • JORGE P. ZUBELLI

    (IMPA (Instituto de Matemática Pura e Aplicada), Estrada Dona Castorina 110, Rio de Janeiro, Rio de Janeiro 22460-320, Brazil)

Abstract

In this paper, we present a new method for computing the first-order approximation of the price of derivatives on futures in the context of multiscale stochastic volatility studied in Fouque et al. (2011). It provides an alternative method to the singular perturbation technique presented in Hikspoors & Jaimungal (2008). The main features of our method are twofold: firstly, it does not rely on any additional hypothesis on the regularity of the payoff function, and secondly, it allows an effective and straightforward calibration procedure of the group market parameters to implied volatilities. These features were not achieved in previous works. Moreover, the central argument of our method could be applied to interest rate derivatives and compound derivatives. The only pre-requisite of our approach is the first-order approximation of the underlying derivative. Furthermore, the model proposed here is well-suited for commodities since it incorporates mean reversion of the spot price and multiscale stochastic volatility. Indeed, the model was validated by calibrating the group market parameters to options on crude-oil futures, and it displays a very good fit of the implied volatility.

Suggested Citation

  • Jean-Pierre Fouque & Yuri F. Saporito & Jorge P. Zubelli, 2014. "Multiscale Stochastic Volatility Model For Derivatives On Futures," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(07), pages 1-31.
  • Handle: RePEc:wsi:ijtafx:v:17:y:2014:i:07:n:s0219024914500435
    DOI: 10.1142/S0219024914500435
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024914500435
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024914500435?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9780521843584 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Barletta & Elisa Nicolato & Stefano Pagliarani, 2019. "The short‐time behavior of VIX‐implied volatilities in a multifactor stochastic volatility framework," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 928-966, July.
    2. J.-P. Fouque & Y. F. Saporito, 2018. "Heston stochastic vol-of-vol model for joint calibration of VIX and S&P 500 options," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 1003-1016, June.
    3. Łukasz Delong, 2019. "Optimal investment for insurance company with exponential utility and wealth-dependent risk aversion coefficient," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(1), pages 73-113, February.
    4. Jean-Pierre Fouque & Sebastian Jaimungal & Yuri F. Saporito, 2021. "Optimal Trading with Signals and Stochastic Price Impact," Papers 2101.10053, arXiv.org, revised Aug 2023.
    5. Min-Ku LEE & Sung-Jin YANG, PhD & Jeong-Hoon KIM, 2017. "Pricing Vulnerable Options with Constant Elasticity of Variance versus Stochastic Elasticity of Variance," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(1), pages 233-247.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:17:y:2014:i:07:n:s0219024914500435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.