IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v22y2019i08ns0219024919500432.html
   My bibliography  Save this article

Pricing And Hedging Of Vix Options For Barndorff-Nielsen And Shephard Models

Author

Listed:
  • TAKUJI ARAI

    (Department of Economics, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan)

Abstract

The VIX call options for the Barndorff-Nielsen and Shephard models will be discussed. Derivatives written on the VIX, which is the most popular volatility measurement, have been traded actively very much. In this paper, we give representations of the VIX call option price for the Barndorff-Nielsen and Shephard models: non-Gaussian Ornstein–Uhlenbeck type stochastic volatility models. Moreover, we provide representations of the locally risk-minimizing strategy constructed by a combination of the underlying riskless and risky assets. Remark that the representations obtained in this paper are efficient to develop a numerical method using the fast Fourier transform. Thus, numerical experiments will be implemented in the last section of this paper.

Suggested Citation

  • Takuji Arai, 2019. "Pricing And Hedging Of Vix Options For Barndorff-Nielsen And Shephard Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-26, December.
  • Handle: RePEc:wsi:ijtafx:v:22:y:2019:i:08:n:s0219024919500432
    DOI: 10.1142/S0219024919500432
    as

    Download full text from publisher

    File URL: https://www.worldscientific.com/doi/abs/10.1142/S0219024919500432
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024919500432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elisa Nicolato & Emmanouil Venardos, 2003. "Option Pricing in Stochastic Volatility Models of the Ornstein‐Uhlenbeck type," Mathematical Finance, Wiley Blackwell, vol. 13(4), pages 445-466, October.
    2. Jérôme Detemple & Yerkin Kitapbayev, 2018. "On American VIX options under the generalized 3/2 and 1/2 models," Mathematical Finance, Wiley Blackwell, vol. 28(2), pages 550-581, April.
    3. Aziz Issaka & Indranil SenGupta, 2017. "Analysis of variance based instruments for Ornstein–Uhlenbeck type models: swap and price index," Annals of Finance, Springer, vol. 13(4), pages 401-434, November.
    4. Takuji Arai & Yuto Imai & Ryoichi Suzuki, 2017. "Local risk-minimization for Barndorff-Nielsen and Shephard models," Finance and Stochastics, Springer, vol. 21(2), pages 551-592, April.
    5. Andrea Barletta & Elisa Nicolato & Stefano Pagliarani, 2019. "The short‐time behavior of VIX‐implied volatilities in a multifactor stochastic volatility framework," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 928-966, July.
    6. Zhiguang (Gerald) Wang, 2009. "Volatility Risk," Issue Briefs 2009513, South Dakota State University, Department of Economics.
    7. Mencía, Javier & Sentana, Enrique, 2013. "Valuation of VIX derivatives," Journal of Financial Economics, Elsevier, vol. 108(2), pages 367-391.
    8. Fred Espen Benth & Martin Groth & Rodwell Kufakunesu, 2007. "Valuing Volatility and Variance Swaps for a Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 347-363.
    9. Semere Habtemicael & Indranil SenGupta, 2016. "Pricing variance and volatility swaps for Barndorff-Nielsen and Shephard process driven financial markets," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-35, December.
    10. Cheng, Jun & Ibraimi, Meriton & Leippold, Markus & Zhang, Jin E., 2012. "A remark on Lin and Chang's paper ‘Consistent modeling of S&P 500 and VIX derivatives’," Journal of Economic Dynamics and Control, Elsevier, vol. 36(5), pages 708-715.
    11. Semere Habtemicael & Indranil Sengupta, 2016. "Pricing Covariance Swaps For Barndorff–Nielsen And Shephard Process Driven Financial Markets," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(03), pages 1-32, September.
    12. Antoine Jacquier & Claude Martini & Aitor Muguruza, 2018. "On VIX futures in the rough Bergomi model," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 45-61, January.
    13. Li, Jing & Li, Lingfei & Zhang, Gongqiu, 2017. "Pure jump models for pricing and hedging VIX derivatives," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 28-55.
    14. Lin, Yueh-Neng & Chang, Chien-Hung, 2010. "Consistent modeling of S&P 500 and VIX derivatives," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2302-2319, November.
    15. Takuji Arai & Ryoichi Suzuki, 2015. "Local risk-minimization for Lévy markets," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-28.
    16. Andrea Barletta & Elisa Nicolato, 2018. "Orthogonal expansions for VIX options under affine jump diffusions," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 951-967, June.
    17. Anatoliy Swishchuk & Zijia Wang, 2017. "Variance and Volatility Swaps and Futures Pricing for Stochastic Volatility Models," Papers 1712.02735, arXiv.org.
    18. Delong, Lukasz & Imkeller, Peter, 2010. "On Malliavin's differentiability of BSDEs with time delayed generators driven by Brownian motions and Poisson random measures," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1748-1775, August.
    19. Takuji Arai & Yuto Imai & Ryoichi Suzuki, 2016. "Numerical Analysis On Local Risk-Minimization For Exponential Lévy Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-27, March.
    20. Guang-Hua Lian & Song-Ping Zhu, 2013. "Pricing VIX options with stochastic volatility and random jumps," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 36(1), pages 71-88, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takuji Arai, 2019. "Pricing and hedging of VIX options for Barndorff-Nielsen and Shephard models," Papers 1904.12260, arXiv.org.
    2. Nicholas Salmon & Indranil SenGupta, 2021. "Fractional Barndorff-Nielsen and Shephard model: applications in variance and volatility swaps, and hedging," Papers 2105.02325, arXiv.org.
    3. Liang Wang & Weixuan Xia, 2022. "Power‐type derivatives for rough volatility with jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1369-1406, July.
    4. Jaegi Jeon & Geonwoo Kim & Jeonggyu Huh, 2019. "Consistent and Efficient Pricing of SPX and VIX Options under Multiscale Stochastic Volatility," Papers 1909.10187, arXiv.org.
    5. Shantanu Awasthi & Indranil SenGupta, 2020. "First exit-time analysis for an approximate Barndorff-Nielsen and Shephard model with stationary self-decomposable variance process," Papers 2006.07167, arXiv.org, revised Jan 2021.
    6. Jaegi Jeon & Geonwoo Kim & Jeonggyu Huh, 2021. "Consistent and efficient pricing of SPX and VIX options under multiscale stochastic volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(5), pages 559-576, May.
    7. Nicholas Salmon & Indranil SenGupta, 2021. "Fractional Barndorff-Nielsen and Shephard model: applications in variance and volatility swaps, and hedging," Annals of Finance, Springer, vol. 17(4), pages 529-558, December.
    8. Changfu Ma & Wei Xu & Yue Kuen Kwok, 2020. "Willow tree algorithms for pricing VIX derivatives under stochastic volatility models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 1-28, March.
    9. Semere Habtemicael & Musie Ghebremichael & Indranil SenGupta, 2019. "Volatility and Variance Swap Using Superposition of the Barndorff-Nielsen and Shephard type Lévy Processes," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 75-92, June.
    10. Michael Roberts & Indranil SenGupta, 2020. "Sequential hypothesis testing in machine learning, and crude oil price jump size detection," Papers 2004.08889, arXiv.org, revised Dec 2020.
    11. Xingguo Luo & Jin E. Zhang & Wenjun Zhang, 2019. "Instantaneous squared VIX and VIX derivatives," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(10), pages 1193-1213, October.
    12. Aziz Issaka & Indranil SenGupta, 2017. "Analysis of variance based instruments for Ornstein–Uhlenbeck type models: swap and price index," Annals of Finance, Springer, vol. 13(4), pages 401-434, November.
    13. Takuji Arai, 2021. "Approximate option pricing formula for Barndorff-Nielsen and Shephard model," Papers 2104.10877, arXiv.org.
    14. Daniel Guterding, 2020. "Inventory effects on the price dynamics of VSTOXX futures quantified via machine learning," Papers 2002.08207, arXiv.org.
    15. Michael Roberts & Indranil SenGupta, 2019. "Infinitesimal generators for two-dimensional L\'evy process-driven hypothesis testing," Papers 1911.08412, arXiv.org.
    16. Takuji Arai & Yuto Imai & Ryo Nakashima, 2018. "Numerical analysis on quadratic hedging strategies for normal inverse Gaussian models," Papers 1801.05597, arXiv.org.
    17. Chen Mao & Guanqi Liu & Yuwen Wang, 2021. "A Closed-Form Pricing Formula for Log-Return Variance Swaps under Stochastic Volatility and Stochastic Interest Rate," Mathematics, MDPI, vol. 10(1), pages 1-17, December.
    18. Masahiro Handa & Noriyoshi Sakuma & Ryoichi Suzuki, 2024. "A Girsanov transformed Clark-Ocone-Haussmann type formula for $$L^1$$ L 1 -pure jump additive processes and its application to portfolio optimization," Annals of Finance, Springer, vol. 20(3), pages 329-352, September.
    19. Michael Roberts & Indranil SenGupta, 2020. "Infinitesimal generators for two-dimensional Lévy process-driven hypothesis testing," Annals of Finance, Springer, vol. 16(1), pages 121-139, March.
    20. Gong, Yaxian, 2020. "Credit default swap and two-sided moral hazard," Finance Research Letters, Elsevier, vol. 34(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:22:y:2019:i:08:n:s0219024919500432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.