Maximum likelihood estimation of higher‐order integer‐valued autoregressive processes
Author
Abstract
Suggested Citation
DOI: 10.1111/j.1467-9892.2008.00590.x
Download full text from publisher
References listed on IDEAS
- Bu, Ruijun & McCabe, Brendan, 2008. "Model selection, estimation and forecasting in INAR(p) models: A likelihood-based Markov Chain approach," International Journal of Forecasting, Elsevier, vol. 24(1), pages 151-162.
- Freeland, R. K. & McCabe, B. P. M., 2004. "Forecasting discrete valued low count time series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 427-434.
- Feike C. Drost & Ramon Van Den Akker & Bas J. M. Werker, 2008.
"Local asymptotic normality and efficient estimation for INAR(p) models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 783-801, September.
- Drost, F.C. & van den Akker, R. & Werker, B.J.M., 2006. "Local Asymptotic Normality and Efficient Estimation for inar (P) Models," Discussion Paper 2006-45, Tilburg University, Center for Economic Research.
- Drost, F.C. & van den Akker, R. & Werker, B.J.M., 2006. "Local Asymptotic Normality and Efficient Estimation for inar (P) Models," Other publications TiSEM 95ec06ea-005b-4c08-a2e6-f, Tilburg University, School of Economics and Management.
- R. K. Freeland & B. P. M. McCabe, 2004. "Analysis of low count time series data by poisson autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 701-722, September.
- Jung, Robert C. & Tremayne, A.R., 2006. "Coherent forecasting in integer time series models," International Journal of Forecasting, Elsevier, vol. 22(2), pages 223-238.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mirko Armillotta & Paolo Gorgi, 2023. "Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models," Tinbergen Institute Discussion Papers 23-054/III, Tinbergen Institute.
- Yang Lu, 2021. "The predictive distributions of thinning‐based count processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 42-67, March.
- Kai Yang & Han Li & Dehui Wang & Chenhui Zhang, 2021. "Random coefficients integer-valued threshold autoregressive processes driven by logistic regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 533-557, December.
- Mohammadipour, Maryam & Boylan, John E., 2012. "Forecast horizon aggregation in integer autoregressive moving average (INARMA) models," Omega, Elsevier, vol. 40(6), pages 703-712.
- Christian Weiß, 2015. "A Poisson INAR(1) model with serially dependent innovations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 829-851, October.
- Zezhun Chen & Angelos Dassios & George Tzougas, 2023. "INAR approximation of bivariate linear birth and death process," Statistical Inference for Stochastic Processes, Springer, vol. 26(3), pages 459-497, October.
- Xanthi Pedeli & Anthony C. Davison & Konstantinos Fokianos, 2015. "Likelihood Estimation for the INAR( p ) Model by Saddlepoint Approximation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1229-1238, September.
- Robert Jung & A. Tremayne, 2011. "Useful models for time series of counts or simply wrong ones?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 59-91, March.
- Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2023. "A first order binomial mixed poisson integer-valued autoregressive model with serially dependent innovations," LSE Research Online Documents on Economics 112222, London School of Economics and Political Science, LSE Library.
- Yousung Park & Hee-Young Kim, 2012. "Diagnostic checks for integer-valued autoregressive models using expected residuals," Statistical Papers, Springer, vol. 53(4), pages 951-970, November.
- Jentsch, Carsten & Weiß, Christian, 2017. "Bootstrapping INAR models," Working Papers 17-02, University of Mannheim, Department of Economics.
- Robert C. Jung & Andrew R. Tremayne, 2020. "Maximum-Likelihood Estimation in a Special Integer Autoregressive Model," Econometrics, MDPI, vol. 8(2), pages 1-15, June.
- Luisa Bisaglia & Margherita Gerolimetto, 2019. "Model-based INAR bootstrap for forecasting INAR(p) models," Computational Statistics, Springer, vol. 34(4), pages 1815-1848, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Raju Maiti & Atanu Biswas, 2015. "Coherent forecasting for stationary time series of discrete data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(3), pages 337-365, July.
- Bu, Ruijun & McCabe, Brendan, 2008. "Model selection, estimation and forecasting in INAR(p) models: A likelihood-based Markov Chain approach," International Journal of Forecasting, Elsevier, vol. 24(1), pages 151-162.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Bisaglia, Luisa & Canale, Antonio, 2016. "Bayesian nonparametric forecasting for INAR models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 70-78.
- Wagner Barreto-Souza, 2015. "Zero-Modified Geometric INAR(1) Process for Modelling Count Time Series with Deflation or Inflation of Zeros," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 839-852, November.
- Timothy Christensen & Stan Hurn & Kenneth Lindsay, 2009.
"It Never Rains but it Pours: Modeling the Persistence of Spikes in Electricity Prices,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-48.
- T M Christensen & A S Hurn & K A Lindsay, 2008. "It never rains but it pours: Modelling the persistence of spikes in electricity prices," NCER Working Paper Series 25, National Centre for Econometric Research.
- Serge Darolles & Gaëlle Le Fol & Yang Lu & Ran Sun, 2018.
"Bivariate integer-autoregressive process with an application to mutual fund flows,"
Post-Print
hal-04590149, HAL.
- Serge Darolles & Gaëlle Le Fol & Yang Lu & Ran Sun, 2019. "Bivariate integer-autoregressive process with an application to mutual fund flows," Post-Print hal-04582262, HAL.
- Serge Darolles & Gaëlle Le Fol & Yang Lu & Ran Sun, 2019. "Bivariate integer-autoregressive process with an application to mutual fund flows," Post-Print halshs-02418967, HAL.
- repec:tiu:tiutis:6b90fe6f-4de9-4192-9f4d-99ae9220af75 is not listed on IDEAS
- Dungey Mardi & Martin Vance L. & Tang Chrismin & Tremayne Andrew, 2020. "A threshold mixed count time series model: estimation and application," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(2), pages 1-18, April.
- Ruijun Bu & Kaddour Hadri & Brendan McCabe, 2006. "Conditional Maximum Likelihood Estimation of Higher-Order Integer-Valued Autoregressive Processes," Working Papers 200619, University of Liverpool, Department of Economics.
- Muhammed Rasheed Irshad & Christophe Chesneau & Veena D’cruz & Naushad Mamode Khan & Radhakumari Maya, 2022. "Bivariate Poisson 2Sum-Lindley Distributions and the Associated BINAR(1) Processes," Mathematics, MDPI, vol. 10(20), pages 1-24, October.
- Simon Nik & Christian H. Weiß, 2020. "CLAR(1) point forecasting under estimation uncertainty," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(4), pages 489-516, November.
- Yousung Park & Hee-Young Kim, 2012. "Diagnostic checks for integer-valued autoregressive models using expected residuals," Statistical Papers, Springer, vol. 53(4), pages 951-970, November.
- Víctor Enciso‐Mora & Peter Neal & T. Subba Rao, 2009. "Efficient order selection algorithms for integer‐valued ARMA processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 1-18, January.
- Layth C. Alwan & Christian H. Weiß, 2017. "INAR implementation of newsvendor model for serially dependent demand counts," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1085-1099, February.
- Ng, Jason & Forbes, Catherine S. & Martin, Gael M. & McCabe, Brendan P.M., 2013.
"Non-parametric estimation of forecast distributions in non-Gaussian, non-linear state space models,"
International Journal of Forecasting, Elsevier, vol. 29(3), pages 411-430.
- Jason Ng & Catherine S. Forbes & Gael M. Martin & Brendan P.M. McCabe, 2011. "Non-Parametric Estimation of Forecast Distributions in Non-Gaussian, Non-linear State Space Models," Monash Econometrics and Business Statistics Working Papers 11/11, Monash University, Department of Econometrics and Business Statistics.
- Vance L. Martin & Andrew R. Tremayne & Robert C. Jung, 2014. "Efficient Method Of Moments Estimators For Integer Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 491-516, November.
- Kai Yang & Yiwei Zhao & Han Li & Dehui Wang, 2023. "On bivariate threshold Poisson integer-valued autoregressive processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(8), pages 931-963, November.
- Wooi Chen Khoo & Seng Huat Ong & Biswas Atanu, 2022. "Coherent Forecasting for a Mixed Integer-Valued Time Series Model," Mathematics, MDPI, vol. 10(16), pages 1-15, August.
- Feike C. Drost & Ramon van den Akker & Bas J. M. Werker, 2009. "Efficient estimation of auto‐regression parameters and innovation distributions for semiparametric integer‐valued AR(p) models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 467-485, April.
- Annika Homburg & Christian H. Weiß & Layth C. Alwan & Gabriel Frahm & Rainer Göb, 2019. "Evaluating Approximate Point Forecasting of Count Processes," Econometrics, MDPI, vol. 7(3), pages 1-28, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:29:y:2008:i:6:p:973-994. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.