IDEAS home Printed from https://ideas.repec.org/p/mnh/wpaper/42881.html
   My bibliography  Save this paper

Bootstrapping INAR models

Author

Listed:
  • Jentsch, Carsten
  • Weiß, Christian

Abstract

Integer-valued autoregressive (INAR) time series form a very useful class of processes suitable to model time series of counts. In the common formulation of Du and Li (1991,JTSA), INAR models of order p share the autocorrelation structure with classical autoregressive time series. This fact allows to estimate the INAR coeffcients, e.g., by Yule-Walker estimators. However, contrary to the AR case, consistent estimation of the model coeffcients turns out to be not suffcient to compute proper `INAR residuals' to formulate a valid model-based bootstrap scheme. In this paper, we propose a general INAR-type bootstrap procedure. Based on mild regularity conditions and suitable meta assumptions, we prove bootstrap consistency of our pro- cedure for statistics belonging to the class of functions of generalized means. In particular, we discuss parametric and semi-parametric implementations of the INAR bootstrap scheme. The latter approach is based on a semi-parametric estimator suggested by Drost, van den Akker and Werker (2009, JRSSB) to estimate jointly the INAR coeffcients and the distribution of the innovations. In an extensive simulation study, we provide numerical evidence of our theoretical findings and illustrate the superiority of the proposed INAR bootstrap over some obvious competitors. We illustrate our method by an application to a real data set about iceberg orders for the Lufthansa stock.

Suggested Citation

  • Jentsch, Carsten & Weiß, Christian, 2017. "Bootstrapping INAR models," Working Papers 17-02, University of Mannheim, Department of Economics.
  • Handle: RePEc:mnh:wpaper:42881
    as

    Download full text from publisher

    File URL: https://madoc.bib.uni-mannheim.de/42881/1/17-02_Jentsch%2C%20Wei%C3%9F.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hee-Young Kim & Yousung Park, 2008. "A non-stationary integer-valued autoregressive model," Statistical Papers, Springer, vol. 49(3), pages 485-502, July.
    2. Silva, Isabel & Silva, M. Eduarda, 2006. "Asymptotic distribution of the Yule-Walker estimator for INAR(p) processes," Statistics & Probability Letters, Elsevier, vol. 76(15), pages 1655-1663, September.
    3. Andrew Patton & Dimitris Politis & Halbert White, 2009. "Correction to “Automatic Block-Length Selection for the Dependent Bootstrap” by D. Politis and H. White," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 372-375.
    4. Schweer, Sebastian & Weiß, Christian H., 2014. "Compound Poisson INAR(1) processes: Stochastic properties and testing for overdispersion," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 267-284.
    5. Simos Meintanis & Dimitris Karlis, 2014. "Validation tests for the innovation distribution in INAR time series models," Computational Statistics, Springer, vol. 29(5), pages 1221-1241, October.
    6. Drost, F.C. & van den Akker, R. & Werker, B.J.M., 2008. "Efficient Estimation of Autoregression Parameters and Innovation Distributions forSemiparametric Integer-Valued AR(p) Models (Revision of DP 2007-23)," Discussion Paper 2008-53, Tilburg University, Center for Economic Research.
    7. Mansour Aghababaei Jazi & Geoff Jones & Chin-Diew Lai, 2012. "First-order integer valued AR processes with zero inflated poisson innovations," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(6), pages 954-963, November.
    8. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    9. Meyer, Marco & Jentsch, Carsten & Kreiss, Jens-Peter, 2015. "Baxter`s inequality and sieve bootstrap for random fields," Working Papers 15-06, University of Mannheim, Department of Economics.
    10. Thorsten Fink & Jens-Peter Kreiss, 2013. "Bootstrap For Random Coefficient Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 646-667, November.
    11. Jung, Robert C. & Tremayne, A.R., 2006. "Coherent forecasting in integer time series models," International Journal of Forecasting, Elsevier, vol. 22(2), pages 223-238.
    12. Yousung Park & Hee-Young Kim, 2012. "Diagnostic checks for integer-valued autoregressive models using expected residuals," Statistical Papers, Springer, vol. 53(4), pages 951-970, November.
    13. Weiß, Christian H. & Schweer, Sebastian, 2016. "Bias corrections for moment estimators in Poisson INAR(1) and INARCH(1) processes," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 124-130.
    14. Robert C. Jung & A. R. Tremayne, 2011. "Convolution‐closed models for count time series with applications," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(3), pages 268-280, May.
    15. Feike C. Drost & Ramon van den Akker & Bas J. M. Werker, 2009. "Efficient estimation of auto‐regression parameters and innovation distributions for semiparametric integer‐valued AR(p) models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 467-485, April.
    16. Ruijun Bu & Brendan McCabe & Kaddour Hadri, 2008. "Maximum likelihood estimation of higher‐order integer‐valued autoregressive processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 973-994, November.
    17. Ruey S. Tsay, 1992. "Model Checking Via Parametric Bootstraps in Time Series Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 1-15, March.
    18. Sebastian Schweer, 2016. "A Goodness-of-Fit Test for Integer-Valued Autoregressive Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 77-98, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert C. Jung & Andrew R. Tremayne, 2020. "Maximum-Likelihood Estimation in a Special Integer Autoregressive Model," Econometrics, MDPI, vol. 8(2), pages 1-15, June.
    2. Luisa Bisaglia & Margherita Gerolimetto, 2019. "Model-based INAR bootstrap for forecasting INAR(p) models," Computational Statistics, Springer, vol. 34(4), pages 1815-1848, December.
    3. Bisaglia, Luisa & Canale, Antonio, 2016. "Bayesian nonparametric forecasting for INAR models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 70-78.
    4. Christian H. Weiß & Annika Homburg & Pedro Puig, 2019. "Testing for zero inflation and overdispersion in INAR(1) models," Statistical Papers, Springer, vol. 60(3), pages 823-848, June.
    5. Yang Lu, 2021. "The predictive distributions of thinning‐based count processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 42-67, March.
    6. Wagner Barreto-Souza, 2015. "Zero-Modified Geometric INAR(1) Process for Modelling Count Time Series with Deflation or Inflation of Zeros," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 839-852, November.
    7. Mirko Armillotta & Paolo Gorgi, 2023. "Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models," Tinbergen Institute Discussion Papers 23-054/III, Tinbergen Institute.
    8. Wagner Barreto-Souza, 2019. "Mixed Poisson INAR(1) processes," Statistical Papers, Springer, vol. 60(6), pages 2119-2139, December.
    9. Yousung Park & Hee-Young Kim, 2012. "Diagnostic checks for integer-valued autoregressive models using expected residuals," Statistical Papers, Springer, vol. 53(4), pages 951-970, November.
    10. Manik Awale & N. Balakrishna & T. V. Ramanathan, 2019. "Testing the constancy of the thinning parameter in a random coefficient integer autoregressive model," Statistical Papers, Springer, vol. 60(5), pages 1515-1539, October.
    11. Vance L. Martin & Andrew R. Tremayne & Robert C. Jung, 2014. "Efficient Method Of Moments Estimators For Integer Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 491-516, November.
    12. Marcelo Bourguignon, 2016. "Poisson–geometric INAR(1) process for modeling count time series with overdispersion," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(3), pages 176-192, August.
    13. Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2017. "Tests for Structural Changes in Time Series of Counts," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 843-865, December.
    14. Boris Aleksandrov & Christian H. Weiß & Simon Nik & Maxime Faymonville & Carsten Jentsch, 2024. "Modelling and diagnostic tests for Poisson and negative-binomial count time series," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(7), pages 843-887, October.
    15. Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2021. "Goodness–of–Fit Tests for Bivariate Time Series of Counts," Econometrics, MDPI, vol. 9(1), pages 1-20, March.
    16. Masoomeh Forughi & Zohreh Shishebor & Atefeh Zamani, 2022. "Portmanteau tests for generalized integer-valued autoregressive time series models," Statistical Papers, Springer, vol. 63(4), pages 1163-1185, August.
    17. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    18. Christian Weiß, 2015. "A Poisson INAR(1) model with serially dependent innovations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 829-851, October.
    19. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    20. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mnh:wpaper:42881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Katharina Rautenberg (email available below). General contact details of provider: https://edirc.repec.org/data/fvmande.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.