IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/112222.html
   My bibliography  Save this paper

A first order binomial mixed poisson integer-valued autoregressive model with serially dependent innovations

Author

Listed:
  • Chen, Zezhun Chen
  • Dassios, Angelos
  • Tzougas, George

Abstract

Motivated by the extended Poisson INAR(1), which allows innovations to be serially dependent, we develop a new family of binomial-mixed Poisson INAR(1) (BMP INAR(1)) processes by adding a mixed Poisson component to the innovations of the classical Poisson INAR(1) process. Due to the flexibility of the mixed Poisson component, the model includes a large class of INAR(1) processes with different transition probabilities. Moreover, it can capture some overdispersion features coming from the data while keeping the innovations serially dependent. We discuss its statistical properties, stationarity conditions and transition probabilities for different mixing densities (Exponential, Lindley). Then, we derive the maximum likelihood estimation method and its asymptotic properties for this model. Finally, we demonstrate our approach using a real data example of iceberg count data from a financial system.

Suggested Citation

  • Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2023. "A first order binomial mixed poisson integer-valued autoregressive model with serially dependent innovations," LSE Research Online Documents on Economics 112222, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:112222
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/112222/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Jung & A. Tremayne, 2011. "Useful models for time series of counts or simply wrong ones?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 59-91, March.
    2. Karlis, Dimitris, 2005. "EM Algorithm for Mixed Poisson and Other Discrete Distributions," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 3-24, May.
    3. Frey, Stefan & Sandås, Patrik, 2009. "The impact of iceberg orders in limit order books," CFR Working Papers 09-06, University of Cologne, Centre for Financial Research (CFR).
    4. Christian Weiß, 2008. "Thinning operations for modeling time series of counts—a survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(3), pages 319-341, August.
    5. Marcelo Bourguignon & Josemar Rodrigues & Manoel Santos-Neto, 2019. "Extended Poisson INAR(1) processes with equidispersion, underdispersion and overdispersion," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(1), pages 101-118, January.
    6. Ruijun Bu & Brendan McCabe & Kaddour Hadri, 2008. "Maximum likelihood estimation of higher‐order integer‐valued autoregressive processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 973-994, November.
    7. M. A. Al‐Osh & A. A. Alzaid, 1987. "First‐Order Integer‐Valued Autoregressive (Inar(1)) Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(3), pages 261-275, May.
    8. Kirchner, Matthias, 2016. "Hawkes and INAR(∞) processes," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2494-2525.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veraart, Almut E.D., 2019. "Modeling, simulation and inference for multivariate time series of counts using trawl processes," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 110-129.
    2. Christian Weiß, 2015. "A Poisson INAR(1) model with serially dependent innovations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 829-851, October.
    3. Xanthi Pedeli & Anthony C. Davison & Konstantinos Fokianos, 2015. "Likelihood Estimation for the INAR( p ) Model by Saddlepoint Approximation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1229-1238, September.
    4. Wooi Chen Khoo & Seng Huat Ong & Atanu Biswas, 2017. "Modeling time series of counts with a new class of INAR(1) model," Statistical Papers, Springer, vol. 58(2), pages 393-416, June.
    5. Robert Jung & A. Tremayne, 2011. "Useful models for time series of counts or simply wrong ones?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 59-91, March.
    6. Shirozhan, M. & Bakouch, Hassan S. & Mohammadpour, M., 2023. "A flexible INAR(1) time series model with dependent zero-inflated count series and medical contagious cases," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 216-230.
    7. Yousung Park & Hee-Young Kim, 2012. "Diagnostic checks for integer-valued autoregressive models using expected residuals," Statistical Papers, Springer, vol. 53(4), pages 951-970, November.
    8. Kimberly F. Sellers & Ali Arab & Sean Melville & Fanyu Cui, 2021. "A flexible univariate moving average time-series model for dispersed count data," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-12, December.
    9. Zeng, Xiaoqiang & Kakizawa, Yoshihide, 2022. "Bias-correction of some estimators in the INAR(1) process," Statistics & Probability Letters, Elsevier, vol. 187(C).
    10. Marcelo Bourguignon & Christian H. Weiß, 2017. "An INAR(1) process for modeling count time series with equidispersion, underdispersion and overdispersion," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 847-868, December.
    11. Ole E. Barndorff-Nielsen & Asger Lunde & Neil Shephard & Almut E.D. Veraart, 2014. "Integer-valued Trawl Processes: A Class of Stationary Infinitely Divisible Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 693-724, September.
    12. Luisa Bisaglia & Margherita Gerolimetto, 2019. "Model-based INAR bootstrap for forecasting INAR(p) models," Computational Statistics, Springer, vol. 34(4), pages 1815-1848, December.
    13. Johannes Ferreira & Ané van der Merwe, 2022. "A Noncentral Lindley Construction Illustrated in an INAR(1) Environment," Stats, MDPI, vol. 5(1), pages 1-19, January.
    14. Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2017. "Tests for Structural Changes in Time Series of Counts," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 843-865, December.
    15. Yao Kang & Dehui Wang & Kai Yang, 2021. "A new INAR(1) process with bounded support for counts showing equidispersion, underdispersion and overdispersion," Statistical Papers, Springer, vol. 62(2), pages 745-767, April.
    16. Zezhun Chen & Angelos Dassios & George Tzougas, 2023. "INAR approximation of bivariate linear birth and death process," Statistical Inference for Stochastic Processes, Springer, vol. 26(3), pages 459-497, October.
    17. Yang Lu, 2021. "The predictive distributions of thinning‐based count processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 42-67, March.
    18. Zeng, Xiaoqiang & Kakizawa, Yoshihide, 2024. "Two-step conditional least squares estimation in ADCINAR(1) process, revisited," Statistics & Probability Letters, Elsevier, vol. 206(C).
    19. Mirko Armillotta & Paolo Gorgi, 2023. "Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models," Tinbergen Institute Discussion Papers 23-054/III, Tinbergen Institute.
    20. Muhammed Rasheed Irshad & Christophe Chesneau & Veena D’cruz & Naushad Mamode Khan & Radhakumari Maya, 2022. "Bivariate Poisson 2Sum-Lindley Distributions and the Associated BINAR(1) Processes," Mathematics, MDPI, vol. 10(20), pages 1-24, October.

    More about this item

    Keywords

    count data time series; binomial-mixed Poisson INAR(1) models; mixed Poisson distribution; overdispersion; maximum likelihood estimation;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:112222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.