IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04582262.html
   My bibliography  Save this paper

Bivariate integer-autoregressive process with an application to mutual fund flows

Author

Listed:
  • Serge Darolles

    (DRM - Dauphine Recherches en Management - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

  • Gaëlle Le Fol

    (DRM - Dauphine Recherches en Management - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

  • Yang Lu

    (CEPN - Centre d'Economie de l'Université Paris Nord - LABEX ICCA - UP13 - Université Paris 13 - Université Sorbonne Nouvelle - Paris 3 - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité - Université Sorbonne Paris Nord - CNRS - Centre National de la Recherche Scientifique - Université Sorbonne Paris Nord)

  • Ran Sun

    (DRM - Dauphine Recherches en Management - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

Abstract

We propose a new family of bivariate nonnegative integer-autoregressive (BINAR) models for count process data. We first generalize the existing BINAR(1) model by allowing for dependent thinning operators and arbitrary innovation distribution. The extended family allows for intuitive interpretation, as well as tractable aggregation and stationarity properties. We then introduce higher order BINAR(p) and BINAR(∞) dynamics to accommodate more flexible serial dependence patterns. So far, the literature has regarded such models as computationally intractable. We show that the extended BINAR family allows for closed-form predictive distributions at any horizons and for any values of p, which significantly facilitates non-linear forecasting and likelihood based estimation. Finally, a BINAR(∞) model with memory persistence is applied to open-ended mutual fund purchase and redemption order counts

Suggested Citation

  • Serge Darolles & Gaëlle Le Fol & Yang Lu & Ran Sun, 2019. "Bivariate integer-autoregressive process with an application to mutual fund flows," Post-Print hal-04582262, HAL.
  • Handle: RePEc:hal:journl:hal-04582262
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. N. Rao Chaganty & Harry Joe, 2006. "Range of correlation matrices for dependent Bernoulli random variables," Biometrika, Biometrika Trust, vol. 93(1), pages 197-206, March.
    2. Scotto, Manuel G. & Weiß, Christian H. & Silva, Maria Eduarda & Pereira, Isabel, 2014. "Bivariate binomial autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 233-251.
    3. Bu, Ruijun & McCabe, Brendan, 2008. "Model selection, estimation and forecasting in INAR(p) models: A likelihood-based Markov Chain approach," International Journal of Forecasting, Elsevier, vol. 24(1), pages 151-162.
    4. Zaffaroni, Paolo, 2004. "Stationarity And Memory Of Arch(∞) Models," Econometric Theory, Cambridge University Press, vol. 20(1), pages 147-160, February.
    5. Brendan P. M. McCabe & Gael M. Martin & David Harris, 2011. "Efficient probabilistic forecasts for counts," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 253-272, March.
    6. Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 475-515, November.
    7. Gordy, Michael B., 2002. "Saddlepoint approximation of CreditRisk+," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1335-1353, July.
    8. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus, 2000. "Stationary Arch Models: Dependence Structure And Central Limit Theorem," Econometric Theory, Cambridge University Press, vol. 16(1), pages 3-22, February.
    9. Katarzyna Bien & Ingmar Nolte & Winfried Pohlmeier, 2011. "An inflated multivariate integer count hurdle model: an application to bid and ask quote dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(4), pages 669-707, June.
    10. Serge Darolles & Christian Gourieroux & Joann Jasiak, 2006. "Structural Laplace Transform and Compound Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(4), pages 477-503, July.
    11. A.M.M. Shahiduzzaman Quoreshi, 2017. "A bivariate integer-valued long-memory model for high-frequency financial count data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(3), pages 1080-1089, February.
    12. Pravin Trivedi & David Zimmer, 2017. "A Note on Identification of Bivariate Copulas for Discrete Count Data," Econometrics, MDPI, vol. 5(1), pages 1-11, February.
    13. Jung, Robert C. & Tremayne, A.R., 2006. "Coherent forecasting in integer time series models," International Journal of Forecasting, Elsevier, vol. 22(2), pages 223-238.
    14. Yan Cui & Fukang Zhu, 2018. "A new bivariate integer-valued GARCH model allowing for negative cross-correlation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 428-452, June.
    15. Heinen, Andreas & Rengifo, Erick, 2007. "Multivariate autoregressive modeling of time series count data using copulas," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 564-583, September.
    16. Kirchner, Matthias, 2016. "Hawkes and INAR(∞) processes," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2494-2525.
    17. McCabe, B.P.M. & Martin, G.M., 2005. "Bayesian predictions of low count time series," International Journal of Forecasting, Elsevier, vol. 21(2), pages 315-330.
    18. Gourieroux, C. & Jasiak, J., 2004. "Heterogeneous INAR(1) model with application to car insurance," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 177-192, April.
    19. Richard Blundell & Rachel Griffith & John van Reenen, 1999. "Market Share, Market Value and Innovation in a Panel of British Manufacturing Firms," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 66(3), pages 529-554.
    20. Sascha Desmettre & Johan de Kock & Peter Ruckdeschel & Frank Thomas Seifried, 2018. "Generalized Pareto processes and fund liquidity risk," Quantitative Finance, Taylor & Francis Journals, vol. 18(8), pages 1327-1343, August.
    21. Xanthi Pedeli & Dimitris Karlis, 2013. "On composite likelihood estimation of a multivariate INAR(1) model," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(2), pages 206-220, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Lu, 2021. "The predictive distributions of thinning‐based count processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 42-67, March.
    2. Lee, Sangyeol & Kim, Dongwon & Kim, Byungsoo, 2023. "Modeling and inference for multivariate time series of counts based on the INGARCH scheme," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    3. Kai Yang & Yiwei Zhao & Han Li & Dehui Wang, 2023. "On bivariate threshold Poisson integer-valued autoregressive processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(8), pages 931-963, November.
    4. Luiza S. C. Piancastelli & Wagner Barreto‐Souza & Hernando Ombao, 2023. "Flexible bivariate INGARCH process with a broad range of contemporaneous correlation," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(2), pages 206-222, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darolles, Serge & Fol, Gaëlle Le & Lu, Yang & Sun, Ran, 2019. "Bivariate integer-autoregressive process with an application to mutual fund flows," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 181-203.
    2. Yang Lu, 2021. "The predictive distributions of thinning‐based count processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 42-67, March.
    3. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    4. Yang Lu & Christian Gourieroux, 2018. "Negative Binomial Autoregressive Process," CEPN Working Papers 2018-01, Centre d'Economie de l'Université de Paris Nord.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Yang Lu & Christian Gourieroux, 2018. "Negative Binomial Autoregressive Process," CEPN Working Papers hal-01730050, HAL.
    7. Fantazzini, Dean, 2020. "Discussing copulas with Sergey Aivazian: a memoir," MPRA Paper 102317, University Library of Munich, Germany.
    8. Luiza S. C. Piancastelli & Wagner Barreto‐Souza & Hernando Ombao, 2023. "Flexible bivariate INGARCH process with a broad range of contemporaneous correlation," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(2), pages 206-222, March.
    9. Ng, Jason & Forbes, Catherine S. & Martin, Gael M. & McCabe, Brendan P.M., 2013. "Non-parametric estimation of forecast distributions in non-Gaussian, non-linear state space models," International Journal of Forecasting, Elsevier, vol. 29(3), pages 411-430.
    10. Vance L. Martin & Andrew R. Tremayne & Robert C. Jung, 2014. "Efficient Method Of Moments Estimators For Integer Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 491-516, November.
    11. Annika Homburg & Christian H. Weiß & Layth C. Alwan & Gabriel Frahm & Rainer Göb, 2019. "Evaluating Approximate Point Forecasting of Count Processes," Econometrics, MDPI, vol. 7(3), pages 1-28, July.
    12. Ruben Loaiza-Maya & Michael Stanley Smith, 2017. "Variational Bayes Estimation of Discrete-Margined Copula Models with Application to Time Series," Papers 1712.09150, arXiv.org, revised Jul 2018.
    13. Luisa Bisaglia & Margherita Gerolimetto, 2019. "Model-based INAR bootstrap for forecasting INAR(p) models," Computational Statistics, Springer, vol. 34(4), pages 1815-1848, December.
    14. Bisaglia, Luisa & Canale, Antonio, 2016. "Bayesian nonparametric forecasting for INAR models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 70-78.
    15. Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2021. "Goodness–of–Fit Tests for Bivariate Time Series of Counts," Econometrics, MDPI, vol. 9(1), pages 1-20, March.
    16. Yang Lu & Christian Gourieroux, 2018. "Negative Binomial Autoregressive Process," Working Papers hal-01730050, HAL.
    17. Patrick Gagliardini & Christian Gouriéroux, 2011. "Approximate Derivative Pricing for Large Classes of Homogeneous Assets with Systematic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 237-280, Spring.
    18. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    19. Gery Geenens, 2024. "(Re-)Reading Sklar (1959)—A Personal View on Sklar’s Theorem," Mathematics, MDPI, vol. 12(3), pages 1-7, January.
    20. Giulia Carallo & Roberto Casarin & Christian P. Robert, 2020. "Generalized Poisson Difference Autoregressive Processes," Papers 2002.04470, arXiv.org.

    More about this item

    Keywords

    Compound autoregressive process; Memory persistence; Mutual funds; Non-linear forecasting;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04582262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.