Bivariate Poisson 2Sum-Lindley Distributions and the Associated BINAR(1) Processes
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Karlis, Dimitris, 2005. "EM Algorithm for Mixed Poisson and Other Discrete Distributions," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 3-24, May.
- Bu, Ruijun & McCabe, Brendan, 2008. "Model selection, estimation and forecasting in INAR(p) models: A likelihood-based Markov Chain approach," International Journal of Forecasting, Elsevier, vol. 24(1), pages 151-162.
- R. K. Freeland & B. P. M. McCabe, 2004. "Analysis of low count time series data by poisson autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 701-722, September.
- Gómez-Déniz, Emilio & Sarabia, José María & Balakrishnan, N., 2012. "A Multivariate Discrete Poisson-Lindley Distribution: Extensions and Actuarial Applications," ASTIN Bulletin, Cambridge University Press, vol. 42(2), pages 655-678, November.
- Emrah Altun & Naushad Mamode Khan, 2022. "Modelling with the Novel INAR(1)-PTE Process," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1735-1751, September.
- Tito LÃvio & Naushad Mamode Khan & Marcelo Bourguignon & Hassan S. Bakouch, 2018. "An INAR(1) model with Poisson-Lindley innovations," Economics Bulletin, AccessEcon, vol. 38(3), pages 1505-1513.
- M. A. Al‐Osh & A. A. Alzaid, 1987. "First‐Order Integer‐Valued Autoregressive (Inar(1)) Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(3), pages 261-275, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Muhammed Rasheed Irshad & Sreedeviamma Aswathy & Radhakumari Maya & Saralees Nadarajah, 2023. "New One-Parameter Over-Dispersed Discrete Distribution and Its Application to the Nonnegative Integer-Valued Autoregressive Model of Order One," Mathematics, MDPI, vol. 12(1), pages 1-14, December.
- Ané van der Merwe & Johannes T. Ferreira, 2022. "An Adapted Discrete Lindley Model Emanating from Negative Binomial Mixtures for Autoregressive Counts," Mathematics, MDPI, vol. 10(21), pages 1-21, November.
- Radhakumari Maya & Christophe Chesneau & Anuresha Krishna & Muhammed Rasheed Irshad, 2022. "Poisson Extended Exponential Distribution with Associated INAR(1) Process and Applications," Stats, MDPI, vol. 5(3), pages 1-18, August.
- Feike C. Drost & Ramon Van Den Akker & Bas J. M. Werker, 2008.
"Local asymptotic normality and efficient estimation for INAR(p) models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 783-801, September.
- Drost, F.C. & van den Akker, R. & Werker, B.J.M., 2006. "Local Asymptotic Normality and Efficient Estimation for inar (P) Models," Other publications TiSEM 95ec06ea-005b-4c08-a2e6-f, Tilburg University, School of Economics and Management.
- Drost, F.C. & van den Akker, R. & Werker, B.J.M., 2006. "Local Asymptotic Normality and Efficient Estimation for inar (P) Models," Discussion Paper 2006-45, Tilburg University, Center for Economic Research.
- Yang, Kai & Yu, Xinyang & Zhang, Qingqing & Dong, Xiaogang, 2022. "On MCMC sampling in self-exciting integer-valued threshold time series models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
- Isabel Silva & M. Eduarda Silva & Isabel Pereira & Nélia Silva, 2005. "Replicated INAR(1) Processes," Methodology and Computing in Applied Probability, Springer, vol. 7(4), pages 517-542, December.
- Baena-Mirabete, S. & Puig, P., 2020. "Computing probabilities of integer-valued random variables by recurrence relations," Statistics & Probability Letters, Elsevier, vol. 161(C).
- Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2023. "A first order binomial mixed poisson integer-valued autoregressive model with serially dependent innovations," LSE Research Online Documents on Economics 112222, London School of Economics and Political Science, LSE Library.
- Johannes Ferreira & Ané van der Merwe, 2022. "A Noncentral Lindley Construction Illustrated in an INAR(1) Environment," Stats, MDPI, vol. 5(1), pages 1-19, January.
- Bisaglia, Luisa & Canale, Antonio, 2016. "Bayesian nonparametric forecasting for INAR models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 70-78.
- Ruijun Bu & Brendan McCabe & Kaddour Hadri, 2008. "Maximum likelihood estimation of higher‐order integer‐valued autoregressive processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 973-994, November.
- Ovielt Baltodano Lopez & Federico Bassetti & Giulia Carallo & Roberto Casarin, 2022. "First-order integer-valued autoregressive processes with Generalized Katz innovations," Papers 2202.02029, arXiv.org, revised Dec 2024.
- Zeng, Xiaoqiang & Kakizawa, Yoshihide, 2024. "Two-step conditional least squares estimation in ADCINAR(1) process, revisited," Statistics & Probability Letters, Elsevier, vol. 206(C).
- M. Kachour & J. F. Yao, 2009. "First‐order rounded integer‐valued autoregressive (RINAR(1)) process," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(4), pages 417-448, July.
- Christian Weiß, 2015. "A Poisson INAR(1) model with serially dependent innovations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 829-851, October.
- Kimberly S. Weems & Paul J. Smith, 2018. "Assessing the robustness of estimators when fitting Poisson inverse Gaussian models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(8), pages 985-1004, November.
- Wagner Barreto-Souza, 2015. "Zero-Modified Geometric INAR(1) Process for Modelling Count Time Series with Deflation or Inflation of Zeros," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 839-852, November.
- Mirko Armillotta & Paolo Gorgi, 2023. "Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models," Tinbergen Institute Discussion Papers 23-054/III, Tinbergen Institute.
- Carallo, Giulia & Casarin, Roberto & Robert, Christian P., 2024.
"Generalized Poisson difference autoregressive processes,"
International Journal of Forecasting, Elsevier, vol. 40(4), pages 1359-1390.
- Giulia Carallo & Roberto Casarin & Christian P. Robert, 2020. "Generalized Poisson Difference Autoregressive Processes," Papers 2002.04470, arXiv.org.
- Raju Maiti & Atanu Biswas, 2015. "Coherent forecasting for stationary time series of discrete data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(3), pages 337-365, July.
More about this item
Keywords
Poisson 2S-Lindley distribution; binomial thinning; over-dispersion; moments; maximum likelihood estimation; simulation; BINAR(1) process;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3835-:d:944729. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.