IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i20p3835-d944729.html
   My bibliography  Save this article

Bivariate Poisson 2Sum-Lindley Distributions and the Associated BINAR(1) Processes

Author

Listed:
  • Muhammed Rasheed Irshad

    (Department of Statistics, Cochin University of Science and Technology, Cochin 682 022, Kerala, India)

  • Christophe Chesneau

    (Department of Mathematics (LMNO), University of Caen-Normandie, UFR de Sciences, F-14032 Caen, France)

  • Veena D’cruz

    (Department of Statistics, Cochin University of Science and Technology, Cochin 682 022, Kerala, India)

  • Naushad Mamode Khan

    (Department of Economics and Statistics, University of Mauritius, Réduit 80837, Mauritius)

  • Radhakumari Maya

    (Department of Statistics, University College, Trivandrum 695 014, Kerala, India)

Abstract

Discrete-valued time series modeling has witnessed numerous bivariate first-order integer-valued autoregressive process or BINAR(1) processes based on binomial thinning and different innovation distributions. These BINAR(1) processes are mainly focused on over-dispersion. This paper aims to propose new bivariate distributions and processes based on a recently proposed over-dispersed distribution: the Poisson 2S-Lindley distribution. The new bivariate distributions, denoted by the abbreviations BP2S-L(I) and BP2S-L(II), are then used as innovation distributions for the BINAR(1) process. Properties are investigated for both distributions as well as for the BINAR(1) processes. The distribution parameters are estimated using the maximum likelihood method, and the BINAR(1)BP2S-L(I) and BINAR(1)BP2S-L(II) process parameters are estimated using the conditional least squares and conditional maximum likelihood methods. Monte Carlo simulation experiments are conducted to study large and small sample performances and for the comparison of the estimation methods. The Pittsburgh crime series and candy sales datasets are then used to compare the new BINAR(1) processes to some other existing BINAR(1) processes in the literature.

Suggested Citation

  • Muhammed Rasheed Irshad & Christophe Chesneau & Veena D’cruz & Naushad Mamode Khan & Radhakumari Maya, 2022. "Bivariate Poisson 2Sum-Lindley Distributions and the Associated BINAR(1) Processes," Mathematics, MDPI, vol. 10(20), pages 1-24, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3835-:d:944729
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/20/3835/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/20/3835/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karlis, Dimitris, 2005. "EM Algorithm for Mixed Poisson and Other Discrete Distributions," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 3-24, May.
    2. Bu, Ruijun & McCabe, Brendan, 2008. "Model selection, estimation and forecasting in INAR(p) models: A likelihood-based Markov Chain approach," International Journal of Forecasting, Elsevier, vol. 24(1), pages 151-162.
    3. R. K. Freeland & B. P. M. McCabe, 2004. "Analysis of low count time series data by poisson autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 701-722, September.
    4. Gómez-Déniz, Emilio & Sarabia, José María & Balakrishnan, N., 2012. "A Multivariate Discrete Poisson-Lindley Distribution: Extensions and Actuarial Applications," ASTIN Bulletin, Cambridge University Press, vol. 42(2), pages 655-678, November.
    5. Emrah Altun & Naushad Mamode Khan, 2022. "Modelling with the Novel INAR(1)-PTE Process," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1735-1751, September.
    6. Tito Lívio & Naushad Mamode Khan & Marcelo Bourguignon & Hassan S. Bakouch, 2018. "An INAR(1) model with Poisson-Lindley innovations," Economics Bulletin, AccessEcon, vol. 38(3), pages 1505-1513.
    7. M. A. Al‐Osh & A. A. Alzaid, 1987. "First‐Order Integer‐Valued Autoregressive (Inar(1)) Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(3), pages 261-275, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammed Rasheed Irshad & Sreedeviamma Aswathy & Radhakumari Maya & Saralees Nadarajah, 2023. "New One-Parameter Over-Dispersed Discrete Distribution and Its Application to the Nonnegative Integer-Valued Autoregressive Model of Order One," Mathematics, MDPI, vol. 12(1), pages 1-14, December.
    2. Ané van der Merwe & Johannes T. Ferreira, 2022. "An Adapted Discrete Lindley Model Emanating from Negative Binomial Mixtures for Autoregressive Counts," Mathematics, MDPI, vol. 10(21), pages 1-21, November.
    3. Radhakumari Maya & Christophe Chesneau & Anuresha Krishna & Muhammed Rasheed Irshad, 2022. "Poisson Extended Exponential Distribution with Associated INAR(1) Process and Applications," Stats, MDPI, vol. 5(3), pages 1-18, August.
    4. Feike C. Drost & Ramon Van Den Akker & Bas J. M. Werker, 2008. "Local asymptotic normality and efficient estimation for INAR(p) models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 783-801, September.
    5. Yang, Kai & Yu, Xinyang & Zhang, Qingqing & Dong, Xiaogang, 2022. "On MCMC sampling in self-exciting integer-valued threshold time series models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    6. Isabel Silva & M. Eduarda Silva & Isabel Pereira & Nélia Silva, 2005. "Replicated INAR(1) Processes," Methodology and Computing in Applied Probability, Springer, vol. 7(4), pages 517-542, December.
    7. Baena-Mirabete, S. & Puig, P., 2020. "Computing probabilities of integer-valued random variables by recurrence relations," Statistics & Probability Letters, Elsevier, vol. 161(C).
    8. Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2023. "A first order binomial mixed poisson integer-valued autoregressive model with serially dependent innovations," LSE Research Online Documents on Economics 112222, London School of Economics and Political Science, LSE Library.
    9. Johannes Ferreira & Ané van der Merwe, 2022. "A Noncentral Lindley Construction Illustrated in an INAR(1) Environment," Stats, MDPI, vol. 5(1), pages 1-19, January.
    10. Bisaglia, Luisa & Canale, Antonio, 2016. "Bayesian nonparametric forecasting for INAR models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 70-78.
    11. Ruijun Bu & Brendan McCabe & Kaddour Hadri, 2008. "Maximum likelihood estimation of higher‐order integer‐valued autoregressive processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 973-994, November.
    12. Ovielt Baltodano Lopez & Federico Bassetti & Giulia Carallo & Roberto Casarin, 2022. "First-order integer-valued autoregressive processes with Generalized Katz innovations," Papers 2202.02029, arXiv.org, revised Dec 2024.
    13. Zeng, Xiaoqiang & Kakizawa, Yoshihide, 2024. "Two-step conditional least squares estimation in ADCINAR(1) process, revisited," Statistics & Probability Letters, Elsevier, vol. 206(C).
    14. M. Kachour & J. F. Yao, 2009. "First‐order rounded integer‐valued autoregressive (RINAR(1)) process," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(4), pages 417-448, July.
    15. Christian Weiß, 2015. "A Poisson INAR(1) model with serially dependent innovations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 829-851, October.
    16. Kimberly S. Weems & Paul J. Smith, 2018. "Assessing the robustness of estimators when fitting Poisson inverse Gaussian models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(8), pages 985-1004, November.
    17. Wagner Barreto-Souza, 2015. "Zero-Modified Geometric INAR(1) Process for Modelling Count Time Series with Deflation or Inflation of Zeros," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 839-852, November.
    18. Mirko Armillotta & Paolo Gorgi, 2023. "Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models," Tinbergen Institute Discussion Papers 23-054/III, Tinbergen Institute.
    19. Carallo, Giulia & Casarin, Roberto & Robert, Christian P., 2024. "Generalized Poisson difference autoregressive processes," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1359-1390.
    20. Raju Maiti & Atanu Biswas, 2015. "Coherent forecasting for stationary time series of discrete data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(3), pages 337-365, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3835-:d:944729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.