Functional ensemble survival tree: Dynamic prediction of Alzheimer’s disease progression accommodating multiple time‐varying covariates
Author
Abstract
Suggested Citation
DOI: 10.1111/rssc.12449
Download full text from publisher
References listed on IDEAS
- Jonathan E. Gellar & Elizabeth Colantuoni & Dale M. Needham & Ciprian M. Crainiceanu, 2014. "Variable-Domain Functional Regression for Modeling ICU Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1425-1439, December.
- Wright, Marvin N. & Ziegler, Andreas, 2017. "ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i01).
- Mark P. Mattson, 2004. "Addendum: Pathways towards and away from Alzheimer's disease," Nature, Nature, vol. 431(7004), pages 107-107, September.
- Fangrong Yan & Xiao Lin & Ruosha Li & Xuelin Huang, 2018. "Functional principal components analysis on moving time windows of longitudinal data: dynamic prediction of times to event," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(4), pages 961-978, August.
- R. Schoop & E. Graf & M. Schumacher, 2008. "Quantifying the Predictive Performance of Prognostic Models for Censored Survival Data with Time-Dependent Covariates," Biometrics, The International Biometric Society, vol. 64(2), pages 603-610, June.
- Colin Wu & Kai Yu & Chin-Tsang Chiang, 2000. "A Two-Step Smoothing Method for Varying-Coefficient Models with Repeated Measurements," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 519-543, September.
- Dehan Kong & Joseph G. Ibrahim & Eunjee Lee & Hongtu Zhu, 2018. "FLCRM: Functional linear cox regression model," Biometrics, The International Biometric Society, vol. 74(1), pages 109-117, March.
- Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
- Mark P. Mattson, 2004. "Pathways towards and away from Alzheimer's disease," Nature, Nature, vol. 430(7000), pages 631-639, August.
- Clara Happ & Sonja Greven, 2018. "Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 649-659, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tao Sun & Ying Ding, 2023. "Neural network on interval‐censored data with application to the prediction of Alzheimer's disease," Biometrics, The International Biometric Society, vol. 79(3), pages 2677-2690, September.
- Shu Jiang & Jiguo Cao & Bernard Rosner & Graham A. Colditz, 2023. "Supervised two‐dimensional functional principal component analysis with time‐to‐event outcomes and mammogram imaging data," Biometrics, The International Biometric Society, vol. 79(2), pages 1359-1369, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marta Spreafico & Francesca Ieva & Marta Fiocco, 2023. "Modelling time-varying covariates effect on survival via functional data analysis: application to the MRC BO06 trial in osteosarcoma," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 271-298, March.
- Cai Li & Luo Xiao & Sheng Luo, 2022. "Joint model for survival and multivariate sparse functional data with application to a study of Alzheimer's Disease," Biometrics, The International Biometric Society, vol. 78(2), pages 435-447, June.
- Amira Elayouty & Marian Scott & Claire Miller, 2022. "Time-Varying Functional Principal Components for Non-Stationary EpCO $$_2$$ 2 in Freshwater Systems," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 506-522, September.
- Xiuli Du & Xiaohu Jiang & Jinguan Lin, 2023. "Multinomial Logistic Factor Regression for Multi-source Functional Block-wise Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 975-1001, September.
- Ngoumen Ngassa Dany Joel & Ngondi Judith Laure & Oben Julius Enyong, 2021. "Effect of Autranella congolensis on Lipid Profile of Rats' Brain with Experimentally Induced Alzheimer's Disease," Journal of Food Research, Canadian Center of Science and Education, vol. 9(4), pages 1-60, December.
- Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Ying Shi & Alexander R. Pilozzi & Xudong Huang, 2020. "Exposure of CuO Nanoparticles Contributes to Cellular Apoptosis, Redox Stress, and Alzheimer’s Aβ Amyloidosis," IJERPH, MDPI, vol. 17(3), pages 1-18, February.
- Zhang, Xiaochen & Zhang, Qingzhao & Ma, Shuangge & Fang, Kuangnan, 2022. "Subgroup analysis for high-dimensional functional regression," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Gema Lordén & Jacob M. Wozniak & Kim Doré & Lara E. Dozier & Chelsea Cates-Gatto & Gentry N. Patrick & David J. Gonzalez & Amanda J. Roberts & Rudolph E. Tanzi & Alexandra C. Newton, 2022. "Enhanced activity of Alzheimer disease-associated variant of protein kinase Cα drives cognitive decline in a mouse model," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
- Rahul Ghosal & Arnab Maity & Timothy Clark & Stefano B. Longo, 2020. "Variable selection in functional linear concurrent regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 565-587, June.
- Cody Carroll & Hans‐Georg Müller, 2023. "Latent deformation models for multivariate functional data and time‐warping separability," Biometrics, The International Biometric Society, vol. 79(4), pages 3345-3358, December.
- Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
- Ali Mahzarnia & Jun Song, 2022. "Multivariate functional group sparse regression: Functional predictor selection," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-22, April.
- Xinyue Chang & Yehua Li & Yi Li, 2023. "Asynchronous and error‐prone longitudinal data analysis via functional calibration," Biometrics, The International Biometric Society, vol. 79(4), pages 3374-3387, December.
- Ming Xiong & Ao Yuan & Hong-Bin Fang & Colin O. Wu & Ming T. Tan, 2022. "Estimation and Hypothesis Test for Mean Curve with Functional Data by Reproducing Kernel Hilbert Space Methods, with Applications in Biostatistics," Mathematics, MDPI, vol. 10(23), pages 1-17, December.
- Zhong, Rou & Liu, Shishi & Li, Haocheng & Zhang, Jingxiao, 2022. "Robust functional principal component analysis for non-Gaussian longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Liu, Yanghui & Li, Yehua & Carroll, Raymond J. & Wang, Naisyin, 2022. "Predictive functional linear models with diverging number of semiparametric single-index interactions," Journal of Econometrics, Elsevier, vol. 230(2), pages 221-239.
- Zhang, Xiaoke & Xue, Wu & Wang, Qiyue, 2021. "Covariate balancing functional propensity score for functional treatments in cross-sectional observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
- Liebl, Dominik & Rameseder, Stefan, 2019. "Partially observed functional data: The case of systematically missing parts," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 104-115.
- Seyed-Ali Sadegh-Zadeh & Chandrasekhar Kambhampati, 2018. "Computational Investigation of Amyloid Peptide Channels in Alzheimer’s Disease," J, MDPI, vol. 2(1), pages 1-14, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:70:y:2021:i:1:p:66-79. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.