IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p1359-1369.html
   My bibliography  Save this article

Supervised two‐dimensional functional principal component analysis with time‐to‐event outcomes and mammogram imaging data

Author

Listed:
  • Shu Jiang
  • Jiguo Cao
  • Bernard Rosner
  • Graham A. Colditz

Abstract

Screening mammography aims to identify breast cancer early and secondarily measures breast density to classify women at higher or lower than average risk for future breast cancer in the general population. Despite the strong association of individual mammography features to breast cancer risk, the statistical literature on mammogram imaging data is limited. While functional principal component analysis (FPCA) has been studied in the literature for extracting image‐based features, it is conducted independently of the time‐to‐event response variable. With the consideration of building a prognostic model for precision prevention, we present a set of flexible methods, supervised FPCA (sFPCA) and functional partial least squares (FPLS), to extract image‐based features associated with the failure time while accommodating the added complication from right censoring. Throughout the article, we hope to demonstrate that one method is favored over the other under different clinical setups. The proposed methods are applied to the motivating data set from the Joanne Knight Breast Health cohort at Siteman Cancer Center. Our approaches not only obtain the best prediction performance compared to the benchmark model, but also reveal different risk patterns within the mammograms.

Suggested Citation

  • Shu Jiang & Jiguo Cao & Bernard Rosner & Graham A. Colditz, 2023. "Supervised two‐dimensional functional principal component analysis with time‐to‐event outcomes and mammogram imaging data," Biometrics, The International Biometric Society, vol. 79(2), pages 1359-1369, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1359-1369
    DOI: 10.1111/biom.13611
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13611
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nan Lin & Junhai Jiang & Shicheng Guo & Momiao Xiong, 2015. "Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-17, July.
    2. Shu Jiang & Yijun Xie & Graham A. Colditz, 2021. "Functional ensemble survival tree: Dynamic prediction of Alzheimer’s disease progression accommodating multiple time‐varying covariates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 66-79, January.
    3. Scott Mayer McKinney & Marcin Sieniek & Varun Godbole & Jonathan Godwin & Natasha Antropova & Hutan Ashrafian & Trevor Back & Mary Chesus & Greg S. Corrado & Ara Darzi & Mozziyar Etemadi & Florencia G, 2020. "International evaluation of an AI system for breast cancer screening," Nature, Nature, vol. 577(7788), pages 89-94, January.
    4. Uno, Hajime & Cai, Tianxi & Tian, Lu & Wei, L.J., 2007. "Evaluating Prediction Rules for t-Year Survivors With Censored Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 527-537, June.
    5. Reiss, Philip T. & Ogden, R. Todd, 2007. "Functional Principal Component Regression and Functional Partial Least Squares," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 984-996, September.
    6. Scott Mayer McKinney & Marcin Sieniek & Varun Godbole & Jonathan Godwin & Natasha Antropova & Hutan Ashrafian & Trevor Back & Mary Chesus & Greg S. Corrado & Ara Darzi & Mozziyar Etemadi & Florencia G, 2020. "Addendum: International evaluation of an AI system for breast cancer screening," Nature, Nature, vol. 586(7829), pages 19-19, October.
    7. Clara Happ & Sonja Greven, 2018. "Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 649-659, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander P. L. Martindale & Carrie D. Llewellyn & Richard O. Visser & Benjamin Ng & Victoria Ngai & Aditya U. Kale & Lavinia Ferrante Ruffano & Robert M. Golub & Gary S. Collins & David Moher & Melis, 2024. "Concordance of randomised controlled trials for artificial intelligence interventions with the CONSORT-AI reporting guidelines," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Joachim Meyer, 2024. "Doing AI: Algorithmic decision support as a human activity," Papers 2402.14674, arXiv.org, revised Apr 2024.
    3. Babak Abedin & Christian Meske & Iris Junglas & Fethi Rabhi & Hamid R. Motahari-Nezhad, 2022. "Designing and Managing Human-AI Interactions," Information Systems Frontiers, Springer, vol. 24(3), pages 691-697, June.
    4. Armando Vargas-Palacios & Nisha Sharma & Gurdeep S. Sagoo, 2023. "Cost-effectiveness requirements for implementing artificial intelligence technology in the Women’s UK Breast Cancer Screening service," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Yuming Jiang & Zhicheng Zhang & Wei Wang & Weicai Huang & Chuanli Chen & Sujuan Xi & M. Usman Ahmad & Yulan Ren & Shengtian Sang & Jingjing Xie & Jen-Yeu Wang & Wenjun Xiong & Tuanjie Li & Zhen Han & , 2023. "Biology-guided deep learning predicts prognosis and cancer immunotherapy response," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Helen M. L. Frazer & Carlos A. Peña-Solorzano & Chun Fung Kwok & Michael S. Elliott & Yuanhong Chen & Chong Wang & Jocelyn F. Lippey & John L. Hopper & Peter Brotchie & Gustavo Carneiro & Davis J. McC, 2024. "Comparison of AI-integrated pathways with human-AI interaction in population mammographic screening for breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Minkyu Shin & Jin Kim & Bas van Opheusden & Thomas L. Griffiths, 2023. "Superhuman Artificial Intelligence Can Improve Human Decision Making by Increasing Novelty," Papers 2303.07462, arXiv.org, revised Apr 2023.
    8. Juexiao Zhou & Haoyang Li & Xingyu Liao & Bin Zhang & Wenjia He & Zhongxiao Li & Longxi Zhou & Xin Gao, 2023. "A unified method to revoke the private data of patients in intelligent healthcare with audit to forget," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Sebastian Schleidgen & Orsolya Friedrich & Selin Gerlek & Galia Assadi & Johanna Seifert, 2023. "The concept of “interaction” in debates on human–machine interaction," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-13, December.
    10. Taynara de Oliveira Castellões & Paloma Maria Silva Rocha Rizol & Luiz Fernando Costa Nascimento, 2024. "Association between Premature Birth and Air Pollutants Using Fuzzy and Adaptive Neuro-Fuzzy Inference System (ANFIS) Techniques," Mathematics, MDPI, vol. 12(18), pages 1-12, September.
    11. Qianwei Zhou & Margarita Zuley & Yuan Guo & Lu Yang & Bronwyn Nair & Adrienne Vargo & Suzanne Ghannam & Dooman Arefan & Shandong Wu, 2021. "A machine and human reader study on AI diagnosis model safety under attacks of adversarial images," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    12. Mélanie Roschewitz & Galvin Khara & Joe Yearsley & Nisha Sharma & Jonathan J. James & Éva Ambrózay & Adam Heroux & Peter Kecskemethy & Tobias Rijken & Ben Glocker, 2023. "Automatic correction of performance drift under acquisition shift in medical image classification," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Ufuk Beyaztas & Han Lin Shang, 2021. "A partial least squares approach for function-on-function interaction regression," Computational Statistics, Springer, vol. 36(2), pages 911-939, June.
    14. Md Altab Hossin & Shuwen Xiong & David Alemzero & Hermas Abudu, 2023. "Analyzing the Progress of China and the World in Achieving Sustainable Development Goals 7 and 13," Sustainability, MDPI, vol. 15(19), pages 1-16, September.
    15. Eduardo L. Montoya & Wendy Meiring, 2016. "An F-type test for detecting departure from monotonicity in a functional linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 322-337, June.
    16. Xu Gao & Weining Shen & Liwen Zhang & Jianhua Hu & Norbert J. Fortin & Ron D. Frostig & Hernando Ombao, 2021. "Regularized matrix data clustering and its application to image analysis," Biometrics, The International Biometric Society, vol. 77(3), pages 890-902, September.
    17. Yu Zheng & Tianxi Cai, 2017. "Augmented estimation for t‐year survival with censored regression models," Biometrics, The International Biometric Society, vol. 73(4), pages 1169-1178, December.
    18. Amira Elayouty & Marian Scott & Claire Miller, 2022. "Time-Varying Functional Principal Components for Non-Stationary EpCO $$_2$$ 2 in Freshwater Systems," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 506-522, September.
    19. Xiuli Du & Xiaohu Jiang & Jinguan Lin, 2023. "Multinomial Logistic Factor Regression for Multi-source Functional Block-wise Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 975-1001, September.
    20. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1359-1369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.