IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v431y2004i7004d10.1038_nature02940.html
   My bibliography  Save this article

Addendum: Pathways towards and away from Alzheimer's disease

Author

Listed:
  • Mark P. Mattson

Abstract

No abstract is available for this item.

Suggested Citation

  • Mark P. Mattson, 2004. "Addendum: Pathways towards and away from Alzheimer's disease," Nature, Nature, vol. 431(7004), pages 107-107, September.
  • Handle: RePEc:nat:nature:v:431:y:2004:i:7004:d:10.1038_nature02940
    DOI: 10.1038/nature02940
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02940
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02940?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shu Jiang & Yijun Xie & Graham A. Colditz, 2021. "Functional ensemble survival tree: Dynamic prediction of Alzheimer’s disease progression accommodating multiple time‐varying covariates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 66-79, January.
    2. Ngoumen Ngassa Dany Joel & Ngondi Judith Laure & Oben Julius Enyong, 2021. "Effect of Autranella congolensis on Lipid Profile of Rats' Brain with Experimentally Induced Alzheimer's Disease," Journal of Food Research, Canadian Center of Science and Education, vol. 9(4), pages 1-60, December.
    3. Gema Lordén & Jacob M. Wozniak & Kim Doré & Lara E. Dozier & Chelsea Cates-Gatto & Gentry N. Patrick & David J. Gonzalez & Amanda J. Roberts & Rudolph E. Tanzi & Alexandra C. Newton, 2022. "Enhanced activity of Alzheimer disease-associated variant of protein kinase Cα drives cognitive decline in a mouse model," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Seyed-Ali Sadegh-Zadeh & Chandrasekhar Kambhampati, 2018. "Computational Investigation of Amyloid Peptide Channels in Alzheimer’s Disease," J, MDPI, vol. 2(1), pages 1-14, December.
    5. Ying Shi & Alexander R. Pilozzi & Xudong Huang, 2020. "Exposure of CuO Nanoparticles Contributes to Cellular Apoptosis, Redox Stress, and Alzheimer’s Aβ Amyloidosis," IJERPH, MDPI, vol. 17(3), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:431:y:2004:i:7004:d:10.1038_nature02940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.