IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v99y2012i2p494-501.html
   My bibliography  Save this article

A generalized Dunnett test for multi-arm multi-stage clinical studies with treatment selection

Author

Listed:
  • D. Magirr
  • T. Jaki
  • J. Whitehead

Abstract

We generalize the Dunnett test to derive efficacy and futility boundaries for a flexible multi-arm multi-stage clinical trial for a normally distributed endpoint with known variance. We show that the boundaries control the familywise error rate in the strong sense. The method is applicable for any number of treatment arms, number of stages and number of patients per treatment per stage. It can be used for a wide variety of boundary types or rules derived from α-spending functions. Additionally, we show how sample size can be computed under a least favourable configuration power requirement and derive formulae for expected sample sizes. Copyright 2012, Oxford University Press.

Suggested Citation

  • D. Magirr & T. Jaki & J. Whitehead, 2012. "A generalized Dunnett test for multi-arm multi-stage clinical studies with treatment selection," Biometrika, Biometrika Trust, vol. 99(2), pages 494-501.
  • Handle: RePEc:oup:biomet:v:99:y:2012:i:2:p:494-501
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/ass002
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan Legare & Ping Yao & Victor S. Y. Lo, 2023. "A case for conducting business-to-business experiments with multi-arm multi-stage adaptive designs," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(3), pages 490-502, September.
    2. Yan‐Cheng Chao & Thomas M. Braun & Roy N. Tamura & Kelley M. Kidwell, 2020. "A Bayesian group sequential small n sequential multiple‐assignment randomized trial," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 663-680, June.
    3. Pranab Ghosh & Lingyun Liu & P. Senchaudhuri & Ping Gao & Cyrus Mehta, 2017. "Design and monitoring of multi‐arm multi‐stage clinical trials," Biometrics, The International Biometric Society, vol. 73(4), pages 1289-1299, December.
    4. Pavel Mozgunov & Thomas Jaki, 2020. "An information theoretic approach for selecting arms in clinical trials," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1223-1247, December.
    5. Nigel Stallard & Peter K Kimani, 2018. "Uniformly minimum variance conditionally unbiased estimation in multi-arm multi-stage clinical trials," Biometrika, Biometrika Trust, vol. 105(2), pages 495-501.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:99:y:2012:i:2:p:494-501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.