IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i4p3612-3623.html
   My bibliography  Save this article

Dynamic enrichment of Bayesian small‐sample, sequential, multiple assignment randomized trial design using natural history data: a case study from Duchenne muscular dystrophy

Author

Listed:
  • Sidi Wang
  • Kelley M. Kidwell
  • Satrajit Roychoudhury

Abstract

In Duchenne muscular dystrophy (DMD) and other rare diseases, recruiting patients into clinical trials is challenging. Additionally, assigning patients to long‐term, multi‐year placebo arms raises ethical and trial retention concerns. This poses a significant challenge to the traditional sequential drug development paradigm. In this paper, we propose a small‐sample, sequential, multiple assignment, randomized trial (snSMART) design that combines dose selection and confirmatory assessment into a single trial. This multi‐stage design evaluates the effects of multiple doses of a promising drug and re‐randomizes patients to appropriate dose levels based on their Stage 1 dose and response. Our proposed approach increases the efficiency of treatment effect estimates by (i) enriching the placebo arm with external control data, and (ii) using data from all stages. Data from external control and different stages are combined using a robust meta‐analytic combined (MAC) approach to consider the various sources of heterogeneity and potential selection bias. We reanalyze data from a DMD trial using the proposed method and external control data from the Duchenne Natural History Study (DNHS). Our method's estimators show improved efficiency compared to the original trial. Also, the robust MAC‐snSMART method most often provides more accurate estimators than the traditional analytic method. Overall, the proposed methodology provides a promising candidate for efficient drug development in DMD and other rare diseases.

Suggested Citation

  • Sidi Wang & Kelley M. Kidwell & Satrajit Roychoudhury, 2023. "Dynamic enrichment of Bayesian small‐sample, sequential, multiple assignment randomized trial design using natural history data: a case study from Duchenne muscular dystrophy," Biometrics, The International Biometric Society, vol. 79(4), pages 3612-3623, December.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3612-3623
    DOI: 10.1111/biom.13887
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13887
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13887?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Beat Neuenschwander & Sebastian Weber & Heinz Schmidli & Anthony O'Hagan, 2020. "Predictively consistent prior effective sample sizes," Biometrics, The International Biometric Society, vol. 76(2), pages 578-587, June.
    2. Yan‐Cheng Chao & Thomas M. Braun & Roy N. Tamura & Kelley M. Kidwell, 2020. "A Bayesian group sequential small n sequential multiple‐assignment randomized trial," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 663-680, June.
    3. Brian P. Hobbs & Bradley P. Carlin & Sumithra J. Mandrekar & Daniel J. Sargent, 2011. "Hierarchical Commensurate and Power Prior Models for Adaptive Incorporation of Historical Information in Clinical Trials," Biometrics, The International Biometric Society, vol. 67(3), pages 1047-1056, September.
    4. Luke O. Ouma & Michael J. Grayling & James M. S. Wason & Haiyan Zheng, 2022. "Bayesian modelling strategies for borrowing of information in randomised basket trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 2014-2037, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liyun Jiang & Lei Nie & Ying Yuan, 2023. "Elastic priors to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(1), pages 49-60, March.
    2. Peng Yang & Yuansong Zhao & Lei Nie & Jonathon Vallejo & Ying Yuan, 2023. "SAM: Self‐adapting mixture prior to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(4), pages 2857-2868, December.
    3. Heinz Schmidli & Sandro Gsteiger & Satrajit Roychoudhury & Anthony O'Hagan & David Spiegelhalter & Beat Neuenschwander, 2014. "Robust meta-analytic-predictive priors in clinical trials with historical control information," Biometrics, The International Biometric Society, vol. 70(4), pages 1023-1032, December.
    4. Thomas A. Murray & Brian P. Hobbs & Theodore C. Lystig & Bradley P. Carlin, 2014. "Semiparametric Bayesian commensurate survival model for post-market medical device surveillance with non-exchangeable historical data," Biometrics, The International Biometric Society, vol. 70(1), pages 185-191, March.
    5. Chen, Nan & Carlin, Bradley P. & Hobbs, Brian P., 2018. "Web-based statistical tools for the analysis and design of clinical trials that incorporate historical controls," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 50-68.
    6. Hui Quan & Xiaofei Chen & Xun Chen & Xiaodong Luo, 2022. "Assessments of Conditional and Unconditional Type I Error Probabilities for Bayesian Hypothesis Testing with Historical Data Borrowing," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 139-157, April.
    7. Wenlin Yuan & Ming-Hui Chen & John Zhong, 2022. "Flexible Conditional Borrowing Approaches for Leveraging Historical Data in the Bayesian Design of Superiority Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 197-215, July.
    8. Ian Wadsworth & Lisa V. Hampson & Thomas Jaki & Graeme J. Sills & Anthony G. Marson & Richard Appleton, 2020. "A quantitative framework to inform extrapolation decisions in children," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 515-534, February.
    9. Atanu Biswas & Jean‐François Angers, 2020. "Discussion on “Predictively consistent prior effective sample sizes,” by Beat Neuenschwander, Sebastian Weber, Heinz Schmidli, and Anthony O'Hagan," Biometrics, The International Biometric Society, vol. 76(2), pages 591-594, June.
    10. Danila Azzolina & Paola Berchialla & Silvia Bressan & Liviana Da Dalt & Dario Gregori & Ileana Baldi, 2022. "A Bayesian Sample Size Estimation Procedure Based on a B-Splines Semiparametric Elicitation Method," IJERPH, MDPI, vol. 19(21), pages 1-15, October.
    11. Meghna Bose & Jean‐François Angers & Atanu Biswas, 2023. "Prior effective sample size in phase II clinical trials with mixed binary and continuous responses," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 233-248, May.
    12. Stavros Nikolakopoulos & Ingeborg van der Tweel & Kit C. B. Roes, 2018. "Dynamic borrowing through empirical power priors that control type I error," Biometrics, The International Biometric Society, vol. 74(3), pages 874-880, September.
    13. Andrea Arfè & Brian Alexander & Lorenzo Trippa, 2021. "Optimality of testing procedures for survival data in the nonproportional hazards setting," Biometrics, The International Biometric Society, vol. 77(2), pages 587-598, June.
    14. Cole Manschot & Eric Laber & Marie Davidian, 2023. "Interim monitoring of sequential multiple assignment randomized trials using partial information," Biometrics, The International Biometric Society, vol. 79(4), pages 2881-2894, December.
    15. Jingjing Ye & Gregory Reaman, 2022. "Improving Early Futility Determination by Learning from External Data in Pediatric Cancer Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 337-351, July.
    16. Yu-Fang Chien & Haiming Zhou & Timothy Hanson & Theodore Lystig, 2023. "Informative g -Priors for Mixed Models," Stats, MDPI, vol. 6(1), pages 1-23, January.
    17. Yimei Li & Ying Yuan, 2020. "PA‐CRM: A continuous reassessment method for pediatric phase I oncology trials with concurrent adult trials," Biometrics, The International Biometric Society, vol. 76(4), pages 1364-1373, December.
    18. Jing Zhang & Yunzhi Kong & A. John Bailer & Zheng Zhu & Byran Smucker, 2022. "Incorporating Historical Data When Determining Sample Size Requirements for Aquatic Toxicity Experiments," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 544-561, September.
    19. Haiyan Zheng & Thomas Jaki & James M.S. Wason, 2023. "Bayesian sample size determination using commensurate priors to leverage preexperimental data," Biometrics, The International Biometric Society, vol. 79(2), pages 669-683, June.
    20. Lanju Zhang & Zailong Wang & Li Wang & Lu Cui & Jeremy Sokolove & Ivan Chan, 2022. "A Simple Approach to Incorporating Historical Control Data in Clinical Trial Design and Analysis," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 216-236, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3612-3623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.