IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v61y2012i2p219-235.html
   My bibliography  Save this article

Phase II trial design with Bayesian adaptive randomization and predictive probability

Author

Listed:
  • Guosheng Yin
  • Nan Chen
  • J. Jack Lee

Abstract

No abstract is available for this item.

Suggested Citation

  • Guosheng Yin & Nan Chen & J. Jack Lee, 2012. "Phase II trial design with Bayesian adaptive randomization and predictive probability," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(2), pages 219-235, March.
  • Handle: RePEc:bla:jorssc:v:61:y:2012:i:2:p:219-235
    DOI: j.1467-9876.2011.01006.x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1467-9876.2011.01006.x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/j.1467-9876.2011.01006.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guosheng Yin & Nan Chen & J. Jack Lee, 2018. "Bayesian Adaptive Randomization and Trial Monitoring with Predictive Probability for Time-to-Event Endpoint," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(2), pages 420-438, August.
    2. Yanxun Xu & Lorenzo Trippa & Peter Müller & Yuan Ji, 2016. "Subgroup-Based Adaptive (SUBA) Designs for Multi-arm Biomarker Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 159-180, June.
    3. Amir Ali Nasrollahzadeh & Amin Khademi, 2022. "Dynamic Programming for Response-Adaptive Dose-Finding Clinical Trials," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1176-1190, March.
    4. Valeria Sambucini, 2021. "Bayesian Sequential Monitoring of Single-Arm Trials: A Comparison of Futility Rules Based on Binary Data," IJERPH, MDPI, vol. 18(16), pages 1-17, August.
    5. Waverly Wei & Xinwei Ma & Jingshen Wang, 2023. "Fair Adaptive Experiments," Papers 2310.16290, arXiv.org.
    6. Alessandra Giovagnoli, 2021. "The Bayesian Design of Adaptive Clinical Trials," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
    7. Alexander M. Kaizer & Brian P. Hobbs & Joseph S. Koopmeiners, 2018. "A multi‐source adaptive platform design for testing sequential combinatorial therapeutic strategies," Biometrics, The International Biometric Society, vol. 74(3), pages 1082-1094, September.
    8. Chen, Nan & Carlin, Bradley P. & Hobbs, Brian P., 2018. "Web-based statistical tools for the analysis and design of clinical trials that incorporate historical controls," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 50-68.
    9. Valeria Sambucini, 2021. "Efficacy and toxicity monitoring via Bayesian predictive probabilities in phase II clinical trials," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 637-663, June.
    10. Yan‐Cheng Chao & Thomas M. Braun & Roy N. Tamura & Kelley M. Kidwell, 2020. "A Bayesian group sequential small n sequential multiple‐assignment randomized trial," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 663-680, June.
    11. Sambucini, Valeria, 2019. "Bayesian predictive monitoring with bivariate binary outcomes in phase II clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 18-30.
    12. Vishal Ahuja & John R. Birge, 2020. "An Approximation Approach for Response-Adaptive Clinical Trial Design," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 877-894, October.
    13. Patricia Gilholm & Kerrie Mengersen & Helen Thompson, 2020. "Identifying latent subgroups of children with developmental delay using Bayesian sequential updating and Dirichlet process mixture modelling," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-17, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:61:y:2012:i:2:p:219-235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.