IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v59y2010i4p673-692.html
   My bibliography  Save this article

Weighted area under the receiver operating characteristic curve and its application to gene selection

Author

Listed:
  • Jialiang Li
  • Jason P. Fine

Abstract

Summary. The partial area under the receiver operating characteristic curve (PAUC) has been proposed for gene selection by Pepe and co‐workers and thereafter applied in real data analysis. It was noticed from empirical studies that this measure has several key weaknesses, such as an inability to reflect non‐uniform weighting of different decision thresholds, resulting in large numbers of ties. We propose the weighted area under the receiver operating characteristic curve (WAUC) to address the problems that are associated with PAUC. Our proposed measure enjoys a greater flexibility to describe the discrimination accuracy of genes. Non‐parametric and parametric estimation methods are introduced, including PAUC as a special case, along with theoretical properties of the estimators. We also provide a simple variance formula, yielding a novel variance estimator for non‐parametric estimation of PAUC, which has proven challenging in previous work. The methods proposed permit sensitivity analyses, whereby the effect of differing weight functions on gene rankings may be assessed and results may be synthesized across weights. Simulations and reanalysis of a well‐known microarray data set illustrate the practical utility of WAUC.

Suggested Citation

  • Jialiang Li & Jason P. Fine, 2010. "Weighted area under the receiver operating characteristic curve and its application to gene selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(4), pages 673-692, August.
  • Handle: RePEc:bla:jorssc:v:59:y:2010:i:4:p:673-692
    DOI: 10.1111/j.1467-9876.2010.00713.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2010.00713.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2010.00713.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lori E. Dodd & Margaret S. Pepe, 2003. "Partial AUC Estimation and Regression," Biometrics, The International Biometric Society, vol. 59(3), pages 614-623, September.
    2. Eugene D. Hahn, 2006. "Re‐examining informative prior elicitation through the lens of Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(1), pages 37-48, January.
    3. Margaret Sullivan Pepe & Gary Longton & Garnet L. Anderson & Michel Schummer, 2003. "Selecting Differentially Expressed Genes from Microarray Experiments," Biometrics, The International Biometric Society, vol. 59(1), pages 133-142, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Bonanomi & Alessandro Rosina, 2022. "Employment Status and Well-Being: A Longitudinal Study on Young Italian People," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 161(2), pages 581-598, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Man-Jen Hsu & Huey-Miin Hsueh, 2013. "The linear combinations of biomarkers which maximize the partial area under the ROC curves," Computational Statistics, Springer, vol. 28(2), pages 647-666, April.
    2. Yu, Wenbao & Park, Taesung, 2015. "Two simple algorithms on linear combination of multiple biomarkers to maximize partial area under the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 15-27.
    3. Li-Xuan Qin & Steven G. Self, 2006. "The Clustering of Regression Models Method with Applications in Gene Expression Data," Biometrics, The International Biometric Society, vol. 62(2), pages 526-533, June.
    4. Peterson, A. Townsend & Papeş, Monica & Soberón, Jorge, 2008. "Rethinking receiver operating characteristic analysis applications in ecological niche modeling," Ecological Modelling, Elsevier, vol. 213(1), pages 63-72.
    5. Margaret Sullivan Pepe & Tianxi Cai, 2004. "The Analysis of Placement Values for Evaluating Discriminatory Measures," Biometrics, The International Biometric Society, vol. 60(2), pages 528-535, June.
    6. Gong Chen & Qing Zhou, 2010. "Heterogeneity in DNA Multiple Alignments: Modeling, Inference, and Applications in Motif Finding," Biometrics, The International Biometric Society, vol. 66(3), pages 694-704, September.
    7. Ahmed Hossain & Hafiz T.A. Khan, 2016. "Identification of genomic markers correlated with sensitivity in solid tumors to Dasatinib using sparse principal components," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2538-2549, October.
    8. Osamu Komori, 2011. "A boosting method for maximization of the area under the ROC curve," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(5), pages 961-979, October.
    9. Soutik Ghosal & Zhen Chen, 2022. "Discriminatory Capacity of Prenatal Ultrasound Measures for Large-for-Gestational-Age Birth: A Bayesian Approach to ROC Analysis Using Placement Values," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 1-22, April.
    10. Juana-María Vivo & Manuel Franco & Donatella Vicari, 2018. "Rethinking an ROC partial area index for evaluating the classification performance at a high specificity range," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 683-704, September.
    11. Holly Janes & Gary Longton & Margaret S. Pepe, 2009. "Accommodating covariates in receiver operating characteristic analysis," Stata Journal, StataCorp LP, vol. 9(1), pages 17-39, March.
    12. Hossain Ahmed & Beyene Joseph, 2013. "Estimation of weighted log partial area under the ROC curve and its application to MicroRNA expression data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(6), pages 743-755, December.
    13. Pascale Leroy & Andrea Tham & Hofer Wong & Rachel Tenney & Chun Chen & Rachel Stiner & John R Balmes & Agnès C Paquet & Mehrdad Arjomandi, 2015. "Inflammatory and Repair Pathways Induced in Human Bronchoalveolar Lavage Cells with Ozone Inhalation," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-28, June.
    14. Xiang, Qinfang & Edwards, Jode & Gadbury, Gary L., 2006. "Interval estimation in a finite mixture model: Modeling P-values in multiple testing applications," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 570-586, November.
    15. Yingye Zheng & Margaret Pepe, 2004. "Calibrating Observed Differential Gene Expression for the Multiplicity of Genes on the Array," UW Biostatistics Working Paper Series 1055, Berkeley Electronic Press.
    16. Shigeyuki Matsui & Shu Zeng & Takeharu Yamanaka & John Shaughnessy, 2008. "Sample Size Calculations Based on Ranking and Selection in Microarray Experiments," Biometrics, The International Biometric Society, vol. 64(1), pages 217-226, March.
    17. Gigliarano, Chiara & Figini, Silvia & Muliere, Pietro, 2014. "Making classifier performance comparisons when ROC curves intersect," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 300-312.
    18. Ahmed Hossain & Joseph Beyene, 2015. "Application of skew-normal distribution for detecting differential expression to microRNA data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 477-491, March.
    19. Yousef, Waleed A., 2013. "Assessing classifiers in terms of the partial area under the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 51-70.
    20. Margaret S. Pepe & Gary Longton & Holly Janes, 2009. "Estimation and comparison of receiver operating characteristic curves," Stata Journal, StataCorp LP, vol. 9(1), pages 1-16, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:59:y:2010:i:4:p:673-692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.