IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v62y2006i2p526-533.html
   My bibliography  Save this article

The Clustering of Regression Models Method with Applications in Gene Expression Data

Author

Listed:
  • Li-Xuan Qin
  • Steven G. Self

Abstract

No abstract is available for this item.

Suggested Citation

  • Li-Xuan Qin & Steven G. Self, 2006. "The Clustering of Regression Models Method with Applications in Gene Expression Data," Biometrics, The International Biometric Society, vol. 62(2), pages 526-533, June.
  • Handle: RePEc:bla:biomet:v:62:y:2006:i:2:p:526-533
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2005.00498.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Glenn Milligan & Martha Cooper, 1985. "An examination of procedures for determining the number of clusters in a data set," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 159-179, June.
    2. Kiefer, Nicholas M, 1978. "Discrete Parameter Variation: Efficient Estimation of a Switching Regression Model," Econometrica, Econometric Society, vol. 46(2), pages 427-434, March.
    3. Danh V. Nguyen & A. Bulak Arpat & Naisyin Wang & Raymond J. Carroll, 2002. "DNA Microarray Experiments: Biological and Technological Aspects," Biometrics, The International Biometric Society, vol. 58(4), pages 701-717, December.
    4. Margaret Sullivan Pepe & Gary Longton & Garnet L. Anderson & Michel Schummer, 2003. "Selecting Differentially Expressed Genes from Microarray Experiments," Biometrics, The International Biometric Society, vol. 59(1), pages 133-142, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Shengtong & Zhang, Hongmei & Karmaus, Wilfried & Roberts, Graham & Arshad, Hasan, 2017. "Adjusting background noise in cluster analyses of longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 93-104.
    2. Coffey, N. & Hinde, J. & Holian, E., 2014. "Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 14-29.
    3. Angelo Mazza & Antonio Punzo, 2020. "Mixtures of multivariate contaminated normal regression models," Statistical Papers, Springer, vol. 61(2), pages 787-822, April.
    4. Cremaschini, Alessandro & Maruotti, Antonello, 2023. "A finite mixture analysis of structural breaks in the G-7 gross domestic product series," Research in Economics, Elsevier, vol. 77(1), pages 76-90.
    5. Tsai, Guei-Feng & Qu, Annie, 2008. "Testing the significance of cell-cycle patterns in time-course microarray data using nonparametric quadratic inference functions," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1387-1398, January.
    6. Zhang, Tonglin & Lin, Ge, 2021. "Generalized k-means in GLMs with applications to the outbreak of COVID-19 in the United States," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    7. Gabriele Perrone & Gabriele Soffritti, 2023. "Seemingly unrelated clusterwise linear regression for contaminated data," Statistical Papers, Springer, vol. 64(3), pages 883-921, June.
    8. Geoffrey Coke & Min Tsao, 2010. "Random effects mixture models for clustering electrical load series," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(6), pages 451-464, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Pei-chen Barry & Hansen, Mark & Mukherjee, Avijit, 2008. "Scenario-based air traffic flow management: From theory to practice," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 685-702, August.
    2. Hélène Syed Zwick & S. Ali Shah Syed, 2017. "The polarization impact of the crisis on the Eurozone labour markets: a hierarchical cluster analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 24(7), pages 472-476, April.
    3. Tran, Minh Chau & Gan, Christopher & Hu, Baiding, 2014. "Credit Constraints and Impact on Farm Household Welfare: Evidence from Vietnam’s North Central Coast region," 2014 Conference, August 28-29, 2014, Nelson, New Zealand 187495, New Zealand Agricultural and Resource Economics Society.
    4. Georgiev, Iliyan, 2010. "Model-based asymptotic inference on the effect of infrequent large shocks on cointegrated variables," Journal of Econometrics, Elsevier, vol. 158(1), pages 37-50, September.
    5. Goethner, Maximilian & Hornuf, Lars & Regner, Tobias, 2021. "Protecting investors in equity crowdfunding: An empirical analysis of the small investor protection act," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    6. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    7. Parrish, Rudolph S. & Spencer III, Horace J. & Xu, Ping, 2009. "Distribution modeling and simulation of gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1650-1660, March.
    8. Cees H. Elzinga & Aart C. Liefbroer, 2007. "De-standardization of Family-Life Trajectories of Young Adults: A Cross-National Comparison Using Sequence Analysis," European Journal of Population, Springer;European Association for Population Studies, vol. 23(3), pages 225-250, October.
    9. Michele Cincera, 2005. "Firms' productivity growth and R&D spillovers: An analysis of alternative technological proximity measures," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(8), pages 657-682.
    10. Pennings, J.S.J. & van Kranenburg, H.L. & Hagedoorn, J., 2005. "Past, present and future of the telecommunications industry," Research Memorandum 016, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    11. Balakrishnan, P. V. (Sundar) & Cooper, Martha C. & Jacob, Varghese S. & Lewis, Phillip A., 1996. "Comparative performance of the FSCL neural net and K-means algorithm for market segmentation," European Journal of Operational Research, Elsevier, vol. 93(2), pages 346-357, September.
    12. Anis Hoayek & Didier Rullière, 2024. "Assessing clustering methods using Shannon's entropy," Post-Print hal-03812055, HAL.
    13. Rozkrut Dominik, 2014. "Measuring Eco-Innovation: Towards Better Policies to Support Green Growth," Folia Oeconomica Stetinensia, Sciendo, vol. 14(1), pages 137-148, June.
    14. Yang, Qing-Qing & Ching, Wai-Ki & Gu, Jia-Wen & Siu, Tak-Kuen, 2018. "Market-making strategy with asymmetric information and regime-switching," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 408-433.
    15. Houda Rharrabti Zaid, 2015. "Transmission du stress financier de la zone euro aux Pays de l’Europe Centrale et Orientale," EconomiX Working Papers 2015-37, University of Paris Nanterre, EconomiX.
    16. Caroline Méjean & Pauline Macouillard & Sandrine Péneau & Camille Lassale & Serge Hercberg & Katia Castetbon, 2014. "Association of Perception of Front-of-Pack Labels with Dietary, Lifestyle and Health Characteristics," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    17. Maddalena Cavicchioli, 2016. "Statistical Analysis Of Mixture Vector Autoregressive Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1192-1213, December.
    18. Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
    19. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    20. Natalia Soledad Kruger, 2011. "La segmentación educativa en Argentina: exploración empírica en base a PISA 2009," Investigaciones de Economía de la Educación volume 6, in: Antonio Caparrós Ruiz (ed.), Investigaciones de Economía de la Educación 6, edition 1, volume 6, chapter 8, pages 135-155, Asociación de Economía de la Educación.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:62:y:2006:i:2:p:526-533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.