IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v28y2013i2p647-666.html
   My bibliography  Save this article

The linear combinations of biomarkers which maximize the partial area under the ROC curves

Author

Listed:
  • Man-Jen Hsu
  • Huey-Miin Hsueh

Abstract

As biotechnology has made remarkable progress nowadays, there has also been a great improvement on data collection with lower cost and higher quality outcomes. More often than not investigators can obtain the measurements of many disease-related features simultaneously. When multiple potential biomarkers are available for constructing a diagnostic tool of a disease, an effective approach is to combine these biomarkers to build one single indicator. For continuous-scaled variables, the use of linear combinations is popular due to its easy interpretation. Su and Liu (J Ame Stat Assoc 88(424):1350–1355, 1993 ) derived the best linear combination under the criterion of the area under the receiver operating characteristic (ROC) curve, when the joint normality of biomarkers is assumed. However, in many investigations, the emphases are placed only on a limited extent of clinical relevancy, instead of the whole ROC curve. The goal of this study is to find the linear combination that maximizes the partial area under a ROC curve (pAUC) for a pre-specified range. In order to find an analytic solution, the first derivative of the pAUC under normal assumption is derived. The explicit form is so complicated, that a further validation on the Hessian matrix is difficult. On the other hand, we find that the pAUC maximizer may not be unique and local maximizers do exist in some cases. Consequently, the existing algorithms find an initial-point dependent solution and are inadequate to serve our needs. Hence, we propose a new algorithm by adopting several initial points at one time. Intensive numerical studies have been performed to show the adequacy of the proposed algorithm. Real examples are also provided for illustration. Copyright Springer-Verlag 2013

Suggested Citation

  • Man-Jen Hsu & Huey-Miin Hsueh, 2013. "The linear combinations of biomarkers which maximize the partial area under the ROC curves," Computational Statistics, Springer, vol. 28(2), pages 647-666, April.
  • Handle: RePEc:spr:compst:v:28:y:2013:i:2:p:647-666
    DOI: 10.1007/s00180-012-0321-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-012-0321-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-012-0321-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lori E. Dodd & Margaret S. Pepe, 2003. "Partial AUC Estimation and Regression," Biometrics, The International Biometric Society, vol. 59(3), pages 614-623, September.
    2. Margaret Sullivan Pepe & Gary Longton & Garnet L. Anderson & Michel Schummer, 2003. "Selecting Differentially Expressed Genes from Microarray Experiments," Biometrics, The International Biometric Society, vol. 59(1), pages 133-142, March.
    3. Tian, Lili, 2010. "Confidence interval estimation of partial area under curve based on combined biomarkers," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 466-472, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Wenbao & Park, Taesung, 2015. "Two simple algorithms on linear combination of multiple biomarkers to maximize partial area under the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 15-27.
    2. Schneider, Matthew J. & Gorr, Wilpen L., 2015. "ROC-based model estimation for forecasting large changes in demand," International Journal of Forecasting, Elsevier, vol. 31(2), pages 253-262.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juana-María Vivo & Manuel Franco & Donatella Vicari, 2018. "Rethinking an ROC partial area index for evaluating the classification performance at a high specificity range," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 683-704, September.
    2. Yu, Wenbao & Park, Taesung, 2015. "Two simple algorithms on linear combination of multiple biomarkers to maximize partial area under the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 15-27.
    3. Yousef, Waleed A., 2013. "Assessing classifiers in terms of the partial area under the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 51-70.
    4. Jialiang Li & Jason P. Fine, 2010. "Weighted area under the receiver operating characteristic curve and its application to gene selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(4), pages 673-692, August.
    5. Li-Xuan Qin & Steven G. Self, 2006. "The Clustering of Regression Models Method with Applications in Gene Expression Data," Biometrics, The International Biometric Society, vol. 62(2), pages 526-533, June.
    6. Peterson, A. Townsend & Papeş, Monica & Soberón, Jorge, 2008. "Rethinking receiver operating characteristic analysis applications in ecological niche modeling," Ecological Modelling, Elsevier, vol. 213(1), pages 63-72.
    7. Margaret Sullivan Pepe & Tianxi Cai, 2004. "The Analysis of Placement Values for Evaluating Discriminatory Measures," Biometrics, The International Biometric Society, vol. 60(2), pages 528-535, June.
    8. Gong Chen & Qing Zhou, 2010. "Heterogeneity in DNA Multiple Alignments: Modeling, Inference, and Applications in Motif Finding," Biometrics, The International Biometric Society, vol. 66(3), pages 694-704, September.
    9. Ahmed Hossain & Hafiz T.A. Khan, 2016. "Identification of genomic markers correlated with sensitivity in solid tumors to Dasatinib using sparse principal components," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2538-2549, October.
    10. Osamu Komori, 2011. "A boosting method for maximization of the area under the ROC curve," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(5), pages 961-979, October.
    11. Soutik Ghosal & Zhen Chen, 2022. "Discriminatory Capacity of Prenatal Ultrasound Measures for Large-for-Gestational-Age Birth: A Bayesian Approach to ROC Analysis Using Placement Values," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 1-22, April.
    12. Holly Janes & Gary Longton & Margaret S. Pepe, 2009. "Accommodating covariates in receiver operating characteristic analysis," Stata Journal, StataCorp LP, vol. 9(1), pages 17-39, March.
    13. Hossain Ahmed & Beyene Joseph, 2013. "Estimation of weighted log partial area under the ROC curve and its application to MicroRNA expression data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(6), pages 743-755, December.
    14. Pascale Leroy & Andrea Tham & Hofer Wong & Rachel Tenney & Chun Chen & Rachel Stiner & John R Balmes & Agnès C Paquet & Mehrdad Arjomandi, 2015. "Inflammatory and Repair Pathways Induced in Human Bronchoalveolar Lavage Cells with Ozone Inhalation," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-28, June.
    15. Xiang, Qinfang & Edwards, Jode & Gadbury, Gary L., 2006. "Interval estimation in a finite mixture model: Modeling P-values in multiple testing applications," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 570-586, November.
    16. Yingye Zheng & Margaret Pepe, 2004. "Calibrating Observed Differential Gene Expression for the Multiplicity of Genes on the Array," UW Biostatistics Working Paper Series 1055, Berkeley Electronic Press.
    17. Shigeyuki Matsui & Shu Zeng & Takeharu Yamanaka & John Shaughnessy, 2008. "Sample Size Calculations Based on Ranking and Selection in Microarray Experiments," Biometrics, The International Biometric Society, vol. 64(1), pages 217-226, March.
    18. Gigliarano, Chiara & Figini, Silvia & Muliere, Pietro, 2014. "Making classifier performance comparisons when ROC curves intersect," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 300-312.
    19. Ahmed Hossain & Joseph Beyene, 2015. "Application of skew-normal distribution for detecting differential expression to microRNA data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 477-491, March.
    20. Margaret S. Pepe & Gary Longton & Holly Janes, 2009. "Estimation and comparison of receiver operating characteristic curves," Stata Journal, StataCorp LP, vol. 9(1), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:28:y:2013:i:2:p:647-666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.