IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v169y2006i1p37-48.html
   My bibliography  Save this article

Re‐examining informative prior elicitation through the lens of Markov chain Monte Carlo methods

Author

Listed:
  • Eugene D. Hahn

Abstract

Summary. In recent years, advances in Markov chain Monte Carlo techniques have had a major influence on the practice of Bayesian statistics. An interesting but hitherto largely underexplored corollary of this fact is that Markov chain Monte Carlo techniques make it practical to consider broader classes of informative priors than have been used previously. Conjugate priors, long the workhorse of classic methods for eliciting informative priors, have their roots in a time when modern computational methods were unavailable. In the current environment more attractive alternatives are practicable. A reappraisal of these classic approaches is undertaken, and principles for generating modern elicitation methods are described. A new prior elicitation methodology in accord with these principles is then presented.

Suggested Citation

  • Eugene D. Hahn, 2006. "Re‐examining informative prior elicitation through the lens of Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(1), pages 37-48, January.
  • Handle: RePEc:bla:jorssa:v:169:y:2006:i:1:p:37-48
    DOI: 10.1111/j.1467-985X.2005.00381.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-985X.2005.00381.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-985X.2005.00381.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengyuan Wang & Eric Bradlow & Edward George, 2014. "Meta-analyses using information reweighting: An application to online advertising," Quantitative Marketing and Economics (QME), Springer, vol. 12(2), pages 209-233, June.
    2. Jialiang Li & Jason P. Fine, 2010. "Weighted area under the receiver operating characteristic curve and its application to gene selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(4), pages 673-692, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:169:y:2006:i:1:p:37-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.