IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v59y2010i4p635-656.html
   My bibliography  Save this article

A Bayesian model for biclustering with applications

Author

Listed:
  • Jian Zhang

Abstract

Summary. The paper proposes a Bayesian method for biclustering with applications to gene microarray studies, where we want to cluster genes and experimental conditions simultaneously. We begin by embedding bicluster analysis into the framework of a plaid model with random effects. The corresponding likelihood is then regularized by the hierarchical priors in each layer. The resulting posterior, which is asymptotically equivalent to a penalized likelihood, can attenuate the effect of high dimensionality on cluster predictions. We provide an empirical Bayes algorithm for sampling posteriors, in which we estimate the cluster memberships of all genes and samples by maximizing an explicit marginal posterior of these memberships. The new algorithm makes the estimation of the Bayesian plaid model computationally feasible and efficient. The performance of our procedure is evaluated on both simulated and real microarray gene expression data sets. The numerical results show that our proposal substantially outperforms the original plaid model in terms of misclassification rates across a range of scenarios. Applying our method to two yeast gene expression data sets, we identify several new biclusters which show the enrichment of known annotations of yeast genes.

Suggested Citation

  • Jian Zhang, 2010. "A Bayesian model for biclustering with applications," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(4), pages 635-656, August.
  • Handle: RePEc:bla:jorssc:v:59:y:2010:i:4:p:635-656
    DOI: 10.1111/j.1467-9876.2010.00716.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2010.00716.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2010.00716.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qiu Xing & Klebanov Lev & Yakovlev Andrei, 2005. "Correlation Between Gene Expression Levels and Limitations of the Empirical Bayes Methodology for Finding Differentially Expressed Genes," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, November.
    2. P. Tseng, 2001. "Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 109(3), pages 475-494, June.
    3. Turner, Heather & Bailey, Trevor & Krzanowski, Wojtek, 2005. "Improved biclustering of microarray data demonstrated through systematic performance tests," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 235-254, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinghua Fang & Jian Zhou & Hongya Zhao & Yizeng Chen, 2022. "A biclustering-based heterogeneous customer requirement determination method from customer participation in product development," Annals of Operations Research, Springer, vol. 309(2), pages 817-835, February.
    2. Jian Zhang, 2017. "Screening and clustering of sparse regressions with finite non-Gaussian mixtures," Biometrics, The International Biometric Society, vol. 73(2), pages 540-550, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Yan & Jian Huang, 2012. "Model Selection for Cox Models with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 68(2), pages 419-428, June.
    2. Bak, Kwan-Young & Jhong, Jae-Hwan & Lee, JungJun & Shin, Jae-Kyung & Koo, Ja-Yong, 2021. "Penalized logspline density estimation using total variation penalty," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    3. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
    4. Aaditya V Rangan & Caroline C McGrouther & John Kelsoe & Nicholas Schork & Eli Stahl & Qian Zhu & Arjun Krishnan & Vicky Yao & Olga Troyanskaya & Seda Bilaloglu & Preeti Raghavan & Sarah Bergen & Ande, 2018. "A loop-counting method for covariate-corrected low-rank biclustering of gene-expression and genome-wide association study data," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-29, May.
    5. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    6. Jung, Yoon Mo & Whang, Joyce Jiyoung & Yun, Sangwoon, 2020. "Sparse probabilistic K-means," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    7. Xu Gao & Weining Shen & Liwen Zhang & Jianhua Hu & Norbert J. Fortin & Ron D. Frostig & Hernando Ombao, 2021. "Regularized matrix data clustering and its application to image analysis," Biometrics, The International Biometric Society, vol. 77(3), pages 890-902, September.
    8. Davood Hajinezhad & Qingjiang Shi, 2018. "Alternating direction method of multipliers for a class of nonconvex bilinear optimization: convergence analysis and applications," Journal of Global Optimization, Springer, vol. 70(1), pages 261-288, January.
    9. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 79(3), pages 681-715, July.
    10. Seunghwan Lee & Sang Cheol Kim & Donghyeon Yu, 2023. "An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso," Computational Statistics, Springer, vol. 38(1), pages 217-242, March.
    11. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
    12. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    13. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    14. Jiahe Lin & George Michailidis, 2019. "Approximate Factor Models with Strongly Correlated Idiosyncratic Errors," Papers 1912.04123, arXiv.org.
    15. Rui Yao & Kenan Zhang, 2023. "How would mobility-as-a-service (MaaS) platform survive as an intermediary? From the viewpoint of stability in many-to-many matching," Papers 2310.08285, arXiv.org.
    16. Emilie Chouzenoux & Jean-Christophe Pesquet & Audrey Repetti, 2016. "A block coordinate variable metric forward–backward algorithm," Journal of Global Optimization, Springer, vol. 66(3), pages 457-485, November.
    17. Garcia-Magariños Manuel & Antoniadis Anestis & Cao Ricardo & González-Manteiga Wenceslao, 2010. "Lasso Logistic Regression, GSoft and the Cyclic Coordinate Descent Algorithm: Application to Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-30, August.
    18. Christoph Buchheim & Marcia Fampa & Orlando Sarmiento, 2021. "Lower Bounds for Cubic Optimization over the Sphere," Journal of Optimization Theory and Applications, Springer, vol. 188(3), pages 823-846, March.
    19. Enrico Civitelli & Matteo Lapucci & Fabio Schoen & Alessio Sortino, 2021. "An effective procedure for feature subset selection in logistic regression based on information criteria," Computational Optimization and Applications, Springer, vol. 80(1), pages 1-32, September.
    20. Zhu, Xiaonan & Chen, Yu & Hu, Jie, 2024. "Estimation of banded time-varying precision matrix based on SCAD and group lasso," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:59:y:2010:i:4:p:635-656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.