IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v84y2022i5p1969-1999.html
   My bibliography  Save this article

Causal inference with spatio‐temporal data: Estimating the effects of airstrikes on insurgent violence in Iraq

Author

Listed:
  • Georgia Papadogeorgou
  • Kosuke Imai
  • Jason Lyall
  • Fan Li

Abstract

Many causal processes have spatial and temporal dimensions. Yet the classic causal inference framework is not directly applicable when the treatment and outcome variables are generated by spatio‐temporal point processes. We extend the potential outcomes framework to these settings by formulating the treatment point process as a stochastic intervention. Our causal estimands include the expected number of outcome events in a specified area under a particular stochastic treatment assignment strategy. Our methodology allows for arbitrary patterns of spatial spillover and temporal carryover effects. Using martingale theory, we show that the proposed estimator is consistent and asymptotically normal as the number of time periods increases. We propose a sensitivity analysis for the possible existence of unmeasured confounders, and extend it to the Hájek estimator. Simulation studies are conducted to examine the estimators' finite sample performance. Finally, we illustrate the proposed methods by estimating the effects of American airstrikes on insurgent violence in Iraq from February 2007 to July 2008. Our analysis suggests that increasing the average number of daily airstrikes for up to 1 month may result in more insurgent attacks. We also find some evidence that airstrikes can displace attacks from Baghdad to new locations up to 400 km away.

Suggested Citation

  • Georgia Papadogeorgou & Kosuke Imai & Jason Lyall & Fan Li, 2022. "Causal inference with spatio‐temporal data: Estimating the effects of airstrikes on insurgent violence in Iraq," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1969-1999, November.
  • Handle: RePEc:bla:jorssb:v:84:y:2022:i:5:p:1969-1999
    DOI: 10.1111/rssb.12548
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12548
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Iavor Bojinov & Neil Shephard, 2019. "Time Series Experiments and Causal Estimands: Exact Randomization Tests and Trading," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1665-1682, October.
    2. Crimaldi, Irene & Pratelli, Luca, 2005. "Convergence results for multivariate martingales," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 571-577, April.
    3. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    4. Michael E. Sobel & Martin A. Lindquist, 2014. "Causal Inference for fMRI Time Series Data With Systematic Errors of Measurement in a Balanced On/Off Study of Social Evaluative Threat," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 967-976, September.
    5. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    6. Iván Díaz Muñoz & Mark van der Laan, 2012. "Population Intervention Causal Effects Based on Stochastic Interventions," Biometrics, The International Biometric Society, vol. 68(2), pages 541-549, June.
    7. Xi Luo & Dylan S. Small & Chiang-Shan R. Li & Paul R. Rosenbaum, 2012. "Inference With Interference Between Units in an fMRI Experiment of Motor Inhibition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 530-541, June.
    8. Melissa Dell & Pablo Querubin, 2018. "Nation Building Through Foreign Intervention: Evidence from Discontinuities in Military Strategies," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 701-764.
    9. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    10. L. Liu & M. G. Hudgens & S. Becker-Dreps, 2016. "On inverse probability-weighted estimators in the presence of interference," Biometrika, Biometrika Trust, vol. 103(4), pages 829-842.
    11. Edward H. Kennedy, 2019. "Nonparametric Causal Effects Based on Incremental Propensity Score Interventions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 645-656, April.
    12. Rigterink, Anouk S., 2021. "The Wane of Command: Evidence on Drone Strikes and Control within Terrorist Organizations," American Political Science Review, Cambridge University Press, vol. 115(1), pages 31-50, February.
    13. Matthew Adam Kocher & Thomas B. Pepinsky & Stathis N. Kalyvas, 2011. "Aerial Bombing and Counterinsurgency in the Vietnam War," American Journal of Political Science, John Wiley & Sons, vol. 55(2), pages 201-218, April.
    14. Georgia Papadogeorgou & Fabrizia Mealli & Corwin M. Zigler, 2019. "Causal inference with interfering units for cluster and population level treatment allocation programs," Biometrics, The International Biometric Society, vol. 75(3), pages 778-787, September.
    15. Lyall, Jason, 2019. "Civilian Casualties, Humanitarian Aid, and Insurgent Violence in Civil Wars," International Organization, Cambridge University Press, vol. 73(4), pages 901-926, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaonan Qu & Ruoxuan Xiong & Jizhou Liu & Guido Imbens, 2021. "Semiparametric Estimation of Treatment Effects in Observational Studies with Heterogeneous Partial Interference," Papers 2107.12420, arXiv.org, revised Jun 2024.
    2. Yi Zhang & Kosuke Imai, 2023. "Individualized Policy Evaluation and Learning under Clustered Network Interference," Papers 2311.02467, arXiv.org, revised Feb 2024.
    3. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    4. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    5. Jacqueline A. Mauro & Edward H. Kennedy & Daniel Nagin, 2020. "Instrumental variable methods using dynamic interventions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1523-1551, October.
    6. Masahiro Kato & Masatoshi Uehara & Shota Yasui, 2020. "Off-Policy Evaluation and Learning for External Validity under a Covariate Shift," Papers 2002.11642, arXiv.org, revised Oct 2020.
    7. Sujatro Chakladar & Samuel Rosin & Michael G. Hudgens & M. Elizabeth Halloran & John D. Clemens & Mohammad Ali & Michael E. Emch, 2022. "Inverse probability weighted estimators of vaccine effects accommodating partial interference and censoring," Biometrics, The International Biometric Society, vol. 78(2), pages 777-788, June.
    8. Mäkinen, Taneli & Li, Fan & Mercatanti, Andrea & Silvestrini, Andrea, 2022. "Causal analysis of central bank holdings of corporate bonds under interference," Economic Modelling, Elsevier, vol. 113(C).
    9. Shi, Chengchun & Wan, Runzhe & Song, Ge & Luo, Shikai & Zhu, Hongtu & Song, Rui, 2023. "A multiagent reinforcement learning framework for off-policy evaluation in two-sided markets," LSE Research Online Documents on Economics 117174, London School of Economics and Political Science, LSE Library.
    10. Nima S. Hejazi & Mark J. van der Laan & Holly E. Janes & Peter B. Gilbert & David C. Benkeser, 2021. "Efficient nonparametric inference on the effects of stochastic interventions under two‐phase sampling, with applications to vaccine efficacy trials," Biometrics, The International Biometric Society, vol. 77(4), pages 1241-1253, December.
    11. Michael Pollmann, 2020. "Causal Inference for Spatial Treatments," Papers 2011.00373, arXiv.org, revised Jan 2023.
    12. Luis R. Martinez & Jonas Jessen & Guo Xu, 2023. "A Glimpse of Freedom: Allied Occupation and Political Resistance in East Germany," American Economic Journal: Applied Economics, American Economic Association, vol. 15(1), pages 68-106, January.
    13. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Aug 2024.
    14. Thiemo Fetzer & Pedro C. L. Souza & Oliver Vanden Eynde & Austin L. Wright, 2021. "Security Transitions," American Economic Review, American Economic Association, vol. 111(7), pages 2275-2308, July.
    15. Joseph Puleo & Ashley Buchanan & Natallia Katenka & M. Elizabeth Halloran & Samuel R. Friedman & Georgios Nikolopoulos, 2024. "Assessing Spillover Effects of Medications for Opioid Use Disorder on HIV Risk Behaviors among a Network of People Who Inject Drugs," Stats, MDPI, vol. 7(2), pages 1-27, June.
    16. Fan Li & Ashley L. Buchanan & Stephen R. Cole, 2022. "Generalizing trial evidence to target populations in non‐nested designs: Applications to AIDS clinical trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 669-697, June.
    17. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    18. A. Giffin & B. J. Reich & S. Yang & A. G. Rappold, 2023. "Generalized propensity score approach to causal inference with spatial interference," Biometrics, The International Biometric Society, vol. 79(3), pages 2220-2231, September.
    19. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    20. Dominic Rohner & Mathias Thoenig, 2021. "The Elusive Peace Dividend of Development Policy: From War Traps to Macro Complementarities," Annual Review of Economics, Annual Reviews, vol. 13(1), pages 111-131, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:84:y:2022:i:5:p:1969-1999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.