IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i526p645-656.html
   My bibliography  Save this article

Nonparametric Causal Effects Based on Incremental Propensity Score Interventions

Author

Listed:
  • Edward H. Kennedy

Abstract

Most work in causal inference considers deterministic interventions that set each unit’s treatment to some fixed value. However, under positivity violations these interventions can lead to nonidentification, inefficiency, and effects with little practical relevance. Further, corresponding effects in longitudinal studies are highly sensitive to the curse of dimensionality, resulting in widespread use of unrealistic parametric models. We propose a novel solution to these problems: incremental interventions that shift propensity score values rather than set treatments to fixed values. Incremental interventions have several crucial advantages. First, they avoid positivity assumptions entirely. Second, they require no parametric assumptions and yet still admit a simple characterization of longitudinal effects, independent of the number of timepoints. For example, they allow longitudinal effects to be visualized with a single curve instead of lists of coefficients. After characterizing incremental interventions and giving identifying conditions for corresponding effects, we also develop general efficiency theory, propose efficient nonparametric estimators that can attain fast convergence rates even when incorporating flexible machine learning, and propose a bootstrap-based confidence band and simultaneous test of no treatment effect. Finally, we explore finite-sample performance via simulation, and apply the methods to study time-varying sociological effects of incarceration on entry into marriage. Supplementary materials for this article are available online.

Suggested Citation

  • Edward H. Kennedy, 2019. "Nonparametric Causal Effects Based on Incremental Propensity Score Interventions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 645-656, April.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:526:p:645-656
    DOI: 10.1080/01621459.2017.1422737
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1422737
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1422737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iván Díaz & Nima S. Hejazi, 2020. "Causal mediation analysis for stochastic interventions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 661-683, July.
    2. Christopher Harshaw & Fredrik Savje & Yitan Wang, 2022. "A Design-Based Riesz Representation Framework for Randomized Experiments," Papers 2210.08698, arXiv.org, revised Oct 2022.
    3. Ted Westling & Peter Gilbert & Marco Carone, 2020. "Causal isotonic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 719-747, July.
    4. Alex Chin & Dean Eckles & Johan Ugander, 2022. "Evaluating Stochastic Seeding Strategies in Networks," Management Science, INFORMS, vol. 68(3), pages 1714-1736, March.
    5. Masahiro Kato & Masatoshi Uehara & Shota Yasui, 2020. "Off-Policy Evaluation and Learning for External Validity under a Covariate Shift," Papers 2002.11642, arXiv.org, revised Oct 2020.
    6. Juraj Bodik, 2024. "Extreme Treatment Effect: Extrapolating Dose-Response Function into Extreme Treatment Domain," Mathematics, MDPI, vol. 12(10), pages 1-36, May.
    7. Georgia Papadogeorgou & Kosuke Imai & Jason Lyall & Fan Li, 2022. "Causal inference with spatio‐temporal data: Estimating the effects of airstrikes on insurgent violence in Iraq," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1969-1999, November.
    8. Jacqueline A. Mauro & Edward H. Kennedy & Daniel Nagin, 2020. "Instrumental variable methods using dynamic interventions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1523-1551, October.
    9. Aaron L. Sarvet & Kerollos N. Wanis & Jessica G. Young & Roberto Hernandez‐Alejandro & Mats J. Stensrud, 2023. "Longitudinal incremental propensity score interventions for limited resource settings," Biometrics, The International Biometric Society, vol. 79(4), pages 3418-3430, December.
    10. Nima S. Hejazi & Mark J. van der Laan & Holly E. Janes & Peter B. Gilbert & David C. Benkeser, 2021. "Efficient nonparametric inference on the effects of stochastic interventions under two‐phase sampling, with applications to vaccine efficacy trials," Biometrics, The International Biometric Society, vol. 77(4), pages 1241-1253, December.
    11. Lauren Cappiello & Zhiwei Zhang & Changyu Shen & Neel M. Butala & Xinping Cui & Robert W. Yeh, 2021. "Adjusting for population differences using machine learning methods," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 750-769, June.
    12. Li, Li & Shi, Pengfei & Fan, Qingliang & Zhong, Wei, 2024. "Causal effect estimation with censored outcome and covariate selection," Statistics & Probability Letters, Elsevier, vol. 204(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:526:p:645-656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.