Off-Policy Evaluation and Learning for External Validity under a Covariate Shift
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
- Antony Young, 2014. "1 + 1 = 3," Palgrave Macmillan Books, in: Brand Media Strategy, edition 0, chapter 0, pages 81-99, Palgrave Macmillan.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Masashi Sugiyama & Taiji Suzuki & Shinichi Nakajima & Hisashi Kashima & Paul Bünau & Motoaki Kawanabe, 2008. "Direct importance estimation for covariate shift adaptation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 699-746, December.
- Tripathi, Gautam, 1999. "A matrix extension of the Cauchy-Schwarz inequality," Economics Letters, Elsevier, vol. 63(1), pages 1-3, April.
- Wooldridge, Jeffrey M., 2001. "Asymptotic Properties Of Weighted M-Estimators For Standard Stratified Samples," Econometric Theory, Cambridge University Press, vol. 17(2), pages 451-470, April.
- Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
- Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003.
"Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score,"
Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
- Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," NBER Technical Working Papers 0251, National Bureau of Economic Research, Inc.
- Guido Imbens, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometric Society World Congress 2000 Contributed Papers 1166, Econometric Society.
- Issa J. Dahabreh & Sarah E. Robertson & Eric J. Tchetgen & Elizabeth A. Stuart & Miguel A. Hernán, 2019. "Generalizing causal inferences from individuals in randomized trials to all trial‐eligible individuals," Biometrics, The International Biometric Society, vol. 75(2), pages 685-694, June.
- Imbens, Guido W. & Lancaster, Tony, 1996.
"Efficient estimation and stratified sampling,"
Journal of Econometrics, Elsevier, vol. 74(2), pages 289-318, October.
- Imbens, G.W. & Lancaster, T., 1991. "Efficient estimation and stratified sampling," Discussion Paper 1991-45, Tilburg University, Center for Economic Research.
- Imbens, G. & Lancaster, T., 1991. "Efficient Estimation and Stratified Sampling," Papers 9145, Tilburg - Center for Economic Research.
- Imbens, G. & Lancaster, T., 1991. "Efficient Estimation And Stratified Sampling," Harvard Institute of Economic Research Working Papers 1545, Harvard - Institute of Economic Research.
- Yusuke Narita & Shota Yasui & Kohei Yata, 2018. "Efficient Counterfactual Learning from Bandit Feedback," Cowles Foundation Discussion Papers 2155, Cowles Foundation for Research in Economics, Yale University.
- Edward H. Kennedy, 2019. "Nonparametric Causal Effects Based on Incremental Propensity Score Interventions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 645-656, April.
- Iván Díaz Muñoz & Mark van der Laan, 2012. "Population Intervention Causal Effects Based on Stochastic Interventions," Biometrics, The International Biometric Society, vol. 68(2), pages 541-549, June.
- Masayuki Henmi & Shinto Eguchi, 2004. "A paradox concerning nuisance parameters and projected estimating functions," Biometrika, Biometrika Trust, vol. 91(4), pages 929-941, December.
- Athey, Susan & Wager, Stefan, 2017. "Efficient Policy Learning," Research Papers 3506, Stanford University, Graduate School of Business.
- Mert Demirer & Vasilis Syrgkanis & Greg Lewis & Victor Chernozhukov, 2019.
"Semi-Parametric Efficient Policy Learning with Continuous Actions,"
Papers
1905.10116, arXiv.org, revised Jul 2019.
- Mert Demirer & Vasilis Syrgkanis & Greg Lewis & Victor Chernozhukov, 2019. "Semi-Parametric Efficient Policy Learning with Continuous Actions," CeMMAP working papers CWP34/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Masahiro Kato & Shota Yasui & Kenichiro McAlinn, 2020. "The Adaptive Doubly Robust Estimator for Policy Evaluation in Adaptive Experiments and a Paradox Concerning Logging Policy," Papers 2010.03792, arXiv.org, revised Jun 2021.
- SAITO Yuta & UDAGAWA Takuma & KIYOHARA Haruka & MOGI Kazuki & NARITA Yusuke & TATENO Kei, 2023. "Evaluating the Robustness of Off-Policy Evaluation," Discussion papers 23041, Research Institute of Economy, Trade and Industry (RIETI).
- Masahiro Kato, 2020. "Confidence Interval for Off-Policy Evaluation from Dependent Samples via Bandit Algorithm: Approach from Standardized Martingales," Papers 2006.06982, arXiv.org.
- Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
- Christopher Adjaho & Timothy Christensen, 2022. "Externally Valid Policy Choice," Papers 2205.05561, arXiv.org, revised Jul 2023.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Masahiro Kato, 2020. "Confidence Interval for Off-Policy Evaluation from Dependent Samples via Bandit Algorithm: Approach from Standardized Martingales," Papers 2006.06982, arXiv.org.
- Andrew Bennett & Nathan Kallus, 2020. "Efficient Policy Learning from Surrogate-Loss Classification Reductions," Papers 2002.05153, arXiv.org.
- Susan Athey & Stefan Wager, 2021.
"Policy Learning With Observational Data,"
Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
- Susan Athey & Stefan Wager, 2017. "Policy Learning with Observational Data," Papers 1702.02896, arXiv.org, revised Sep 2020.
- Buchinsky, Moshe & Li, Fanghua & Liao, Zhipeng, 2022. "Estimation and inference of semiparametric models using data from several sources," Journal of Econometrics, Elsevier, vol. 226(1), pages 80-103.
- Masahiro Kato, 2021. "Adaptive Doubly Robust Estimator from Non-stationary Logging Policy under a Convergence of Average Probability," Papers 2102.08975, arXiv.org, revised Mar 2021.
- Sookyo Jeong & Hongseok Namkoong, 2020. "Assessing External Validity Over Worst-case Subpopulations," Papers 2007.02411, arXiv.org, revised Feb 2022.
- Chunrong Ai & Yue Fang & Haitian Xie, 2024. "Data-driven Policy Learning for Continuous Treatments," Papers 2402.02535, arXiv.org, revised Nov 2024.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Sung Jae Jun & Sokbae Lee, 2024.
"Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
- Sung Jae Jun & Sokbae Lee, 2020. "Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions," Papers 2004.08318, arXiv.org, revised Oct 2023.
- Michael C. Knaus, 2021.
"A double machine learning approach to estimate the effects of musical practice on student’s skills,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
- Knaus, Michael C., 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," IZA Discussion Papers 11547, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," Papers 1805.10300, arXiv.org, revised Jan 2019.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021.
"A unified framework for efficient estimation of general treatment models,"
Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2018. "A Unified Framework for Efficient Estimation of General Treatment Models," Papers 1808.04936, arXiv.org, revised Aug 2018.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2019. "A Unified Framework for Efficient Estimation of General Treatment Models," CeMMAP working papers CWP64/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ai, C. & Linton, O. & Motegi, K. & Zhang, Z., 2019. "A Unified Framework for Efficient Estimation of General Treatment Models," Cambridge Working Papers in Economics 1934, Faculty of Economics, University of Cambridge.
- Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
- Yihui He & Fang Han, 2023. "On propensity score matching with a diverging number of matches," Papers 2310.14142, arXiv.org, revised Nov 2023.
- Prokhorov, Artem & Schmidt, Peter, 2009.
"GMM redundancy results for general missing data problems,"
Journal of Econometrics, Elsevier, vol. 151(1), pages 47-55, July.
- Artem Prokhorov & Peter Schmidt, 2008. "GMM Redundancy Results for General Missing Data Problems," Working Papers 08003, Concordia University, Department of Economics.
- Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
- Masahiro Kato & Shota Yasui & Kenichiro McAlinn, 2020. "The Adaptive Doubly Robust Estimator for Policy Evaluation in Adaptive Experiments and a Paradox Concerning Logging Policy," Papers 2010.03792, arXiv.org, revised Jun 2021.
- Sung Jae Jun & Sokbae (Simon) Lee, 2020. "Causal inference in case-control studies," CeMMAP working papers CWP19/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
- Zhaonan Qu & Ruoxuan Xiong & Jizhou Liu & Guido Imbens, 2021. "Semiparametric Estimation of Treatment Effects in Observational Studies with Heterogeneous Partial Interference," Papers 2107.12420, arXiv.org, revised Jun 2024.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2020-03-09 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.11642. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.