IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i528p1665-1682.html
   My bibliography  Save this article

Time Series Experiments and Causal Estimands: Exact Randomization Tests and Trading

Author

Listed:
  • Iavor Bojinov
  • Neil Shephard

Abstract

We define causal estimands for experiments on single time series, extending the potential outcome framework to dealing with temporal data. Our approach allows the estimation of a broad class of these estimands and exact randomization-based p-values for testing causal effects, without imposing stringent assumptions. We further derive a general central limit theorem that can be used to conduct conservative tests and build confidence intervals for causal effects. Finally, we provide three methods for generalizing our approach to multiple units that are receiving the same class of treatment, over time. We test our methodology on simulated “potential autoregressions,” which have a causal interpretation. Our methodology is partially inspired by data from a large number of experiments carried out by a financial company who compared the impact of two different ways of trading equity futures contracts. We use our methodology to make causal statements about their trading methods. Supplementary materials for this article are available online.

Suggested Citation

  • Iavor Bojinov & Neil Shephard, 2019. "Time Series Experiments and Causal Estimands: Exact Randomization Tests and Trading," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1665-1682, October.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1665-1682
    DOI: 10.1080/01621459.2018.1527225
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1527225
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1527225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fiammetta Menchetti & Fabrizio Cipollini & Fabrizia Mealli, 2021. "Estimating the causal effect of an intervention in a time series setting: the C-ARIMA approach," Papers 2103.06740, arXiv.org, revised Sep 2021.
    2. Fiammetta Menchetti & Fabrizio Cipollini & Fabrizia Mealli, 2023. "Combining counterfactual outcomes and ARIMA models for policy evaluation," The Econometrics Journal, Royal Economic Society, vol. 26(1), pages 1-24.
    3. Billy Ferguson & Brad Ross, 2020. "Assessing the Sensitivity of Synthetic Control Treatment Effect Estimates to Misspecification Error," Papers 2012.15367, arXiv.org, revised Feb 2021.
    4. Georgia Papadogeorgou & Kosuke Imai & Jason Lyall & Fan Li, 2022. "Causal inference with spatio‐temporal data: Estimating the effects of airstrikes on insurgent violence in Iraq," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1969-1999, November.
    5. Shi, Chengchun & Wan, Runzhe & Song, Ge & Luo, Shikai & Zhu, Hongtu & Song, Rui, 2023. "A multiagent reinforcement learning framework for off-policy evaluation in two-sided markets," LSE Research Online Documents on Economics 117174, London School of Economics and Political Science, LSE Library.
    6. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    7. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    8. Davide Viviano & Jelena Bradic, 2021. "Dynamic covariate balancing: estimating treatment effects over time with potential local projections," Papers 2103.01280, arXiv.org, revised Jan 2024.
    9. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    10. Alex Chin & Zhiwei Qin, 2023. "A Unified Representation Framework for Rideshare Marketplace Equilibrium and Efficiency," Papers 2302.14358, arXiv.org.
    11. Fiammetta Menchetti & Fabrizio Cipollini & Fabrizia Mealli, 2021. "Causal effect of regulated Bitcoin futures on volatility and volume," Papers 2109.15052, arXiv.org.
    12. Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
    13. Endong Wang, 2024. "Structural counterfactual analysis in macroeconomics: theory and inference," Papers 2409.09577, arXiv.org.
    14. Davide Fiaschi & Cristina Tealdi, 2024. "Let's roll back! The challenging task of regulating temporary contracts," Papers 2401.17971, arXiv.org.
    15. Evan Munro & David Jones & Jennifer Brennan & Roland Nelet & Vahab Mirrokni & Jean Pouget-Abadie, 2023. "Causal Estimation of User Learning in Personalized Systems," Papers 2306.00485, arXiv.org.
    16. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Aug 2024.
    17. Ashesh Rambachan & Neil Shephard, 2019. "Econometric analysis of potential outcomes time series: instruments, shocks, linearity and the causal response function," Papers 1903.01637, arXiv.org, revised Feb 2020.
    18. Toru Kitagawa & Weining Wang & Mengshan Xu, 2022. "Policy Choice in Time Series by Empirical Welfare Maximization," Papers 2205.03970, arXiv.org, revised Jun 2023.
    19. Iavor Bojinov & Ashesh Rambachan & Neil Shephard, 2021. "Panel experiments and dynamic causal effects: A finite population perspective," Quantitative Economics, Econometric Society, vol. 12(4), pages 1171-1196, November.
    20. Christis Katsouris, 2023. "Structural Analysis of Vector Autoregressive Models," Papers 2312.06402, arXiv.org, revised Feb 2024.
    21. Ke Sun & Linglong Kong & Hongtu Zhu & Chengchun Shi, 2024. "Optimal Treatment Allocation Strategies for A/B Testing in Partially Observable Time Series Experiments," Papers 2408.05342, arXiv.org, revised Oct 2024.
    22. Iavor Bojinov & David Simchi-Levi & Jinglong Zhao, 2023. "Design and Analysis of Switchback Experiments," Management Science, INFORMS, vol. 69(7), pages 3759-3777, July.
    23. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1665-1682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.