IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v84y2022i1p114-148.html
   My bibliography  Save this article

Waste‐free sequential Monte Carlo

Author

Listed:
  • Hai‐Dang Dau
  • Nicolas Chopin

Abstract

A standard way to move particles in a sequential Monte Carlo (SMC) sampler is to apply several steps of a Markov chain Monte Carlo (MCMC) kernel. Unfortunately, it is not clear how many steps need to be performed for optimal performance. In addition, the output of the intermediate steps are discarded and thus wasted somehow. We propose a new, waste‐free SMC algorithm which uses the outputs of all these intermediate MCMC steps as particles. We establish that its output is consistent and asymptotically normal. We use the expression of the asymptotic variance to develop various insights on how to implement the algorithm in practice. We develop in particular a method to estimate, from a single run of the algorithm, the asymptotic variance of any particle estimate. We show empirically, through a range of numerical examples, that waste‐free SMC tends to outperform standard SMC samplers, and especially so in situations where the mixing of the considered MCMC kernels decreases across iterations (as in tempering or rare event problems).

Suggested Citation

  • Hai‐Dang Dau & Nicolas Chopin, 2022. "Waste‐free sequential Monte Carlo," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 114-148, February.
  • Handle: RePEc:bla:jorssb:v:84:y:2022:i:1:p:114-148
    DOI: 10.1111/rssb.12475
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12475
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12475?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. C. Drovandi & A. N. Pettitt, 2011. "Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation," Biometrics, The International Biometric Society, vol. 67(1), pages 225-233, March.
    2. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    3. repec:dau:papers:123456789/5671 is not listed on IDEAS
    4. Nicolas Chopin, 2002. "A sequential particle filter method for static models," Biometrika, Biometrika Trust, vol. 89(3), pages 539-552, August.
    5. N. Chopin & P. E. Jacob & O. Papaspiliopoulos, 2013. "SMC-super-2: an efficient algorithm for sequential analysis of state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 397-426, June.
    6. A Lee & N Whiteley, 2018. "Variance estimation in the particle filter," Biometrika, Biometrika Trust, vol. 105(3), pages 609-625.
    7. Beskos, Alexandros & Jasra, Ajay & Law, Kody & Tempone, Raul & Zhou, Yan, 2017. "Multilevel sequential Monte Carlo samplers," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1417-1440.
    8. repec:dau:papers:123456789/7305 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajay Jasra & Kody Law & Carina Suciu, 2020. "Advanced Multilevel Monte Carlo Methods," International Statistical Review, International Statistical Institute, vol. 88(3), pages 548-579, December.
    2. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    3. Lau, F. Din-Houn & Gandy, Axel, 2014. "RMCMC: A system for updating Bayesian models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 99-110.
    4. Axel Finke & Adam Johansen & Dario Spanò, 2014. "Static-parameter estimation in piecewise deterministic processes using particle Gibbs samplers," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 577-609, June.
    5. Li, Dan & Clements, Adam & Drovandi, Christopher, 2021. "Efficient Bayesian estimation for GARCH-type models via Sequential Monte Carlo," Econometrics and Statistics, Elsevier, vol. 19(C), pages 22-46.
    6. Warne, David J. & Baker, Ruth E. & Simpson, Matthew J., 2018. "Multilevel rejection sampling for approximate Bayesian computation," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 71-86.
    7. Drovandi, Christopher C. & McGree, James M. & Pettitt, Anthony N., 2013. "Sequential Monte Carlo for Bayesian sequentially designed experiments for discrete data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 320-335.
    8. Arnaud Dufays, 2014. "On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers," Working Paper Research 263, National Bank of Belgium.
    9. Axel Finke & Ruth King & Alexandros Beskos & Petros Dellaportas, 2019. "Efficient Sequential Monte Carlo Algorithms for Integrated Population Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 204-224, June.
    10. Patrick Aschermayr & Konstantinos Kalogeropoulos, 2023. "Sequential Bayesian Learning for Hidden Semi-Markov Models," Papers 2301.10494, arXiv.org.
    11. Drovandi, Christopher C. & Pettitt, Anthony N., 2011. "Likelihood-free Bayesian estimation of multivariate quantile distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2541-2556, September.
    12. James Martin & Ajay Jasra & Emma McCoy, 2013. "Inference for a class of partially observed point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 413-437, June.
    13. Mark Bognanni & John Zito, 2019. "Sequential Bayesian Inference for Vector Autoregressions with Stochastic Volatility," Working Papers 19-29, Federal Reserve Bank of Cleveland.
    14. Brignone, Riccardo & Gonzato, Luca & Lütkebohmert, Eva, 2023. "Efficient Quasi-Bayesian Estimation of Affine Option Pricing Models Using Risk-Neutral Cumulants," Journal of Banking & Finance, Elsevier, vol. 148(C).
    15. Edward Herbst & Frank Schorfheide, 2014. "Sequential Monte Carlo Sampling For Dsge Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1073-1098, November.
    16. Naoki Awaya & Yasuhiro Omori, 2021. "Particle Rolling MCMC with Double-Block Sampling ," CIRJE F-Series CIRJE-F-1175, CIRJE, Faculty of Economics, University of Tokyo.
    17. Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2018. "Monte Carlo Confidence Sets for Identified Sets," Econometrica, Econometric Society, vol. 86(6), pages 1965-2018, November.
    18. Hirokuni Iiboshi & Mototsugu Shintani & Kozo Ueda, 2022. "Estimating a Nonlinear New Keynesian Model with the Zero Lower Bound for Japan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(6), pages 1637-1671, September.
    19. Ettmeier, Stephanie & Kriwoluzky, Alexander, 2019. "Active, or passive? Revisiting the role of fiscal policy in the Great Inflation," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203609, Verein für Socialpolitik / German Economic Association.
    20. Nicolas Chopin & Mathieu Gerber, 2017. "Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension Reduction, Application to Partly Observed Diffusion Processes," Working Papers 2017-35, Center for Research in Economics and Statistics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:84:y:2022:i:1:p:114-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.