IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v72y2010i5p673-694.html
   My bibliography  Save this article

A multiresolution approach to time warping achieved by a Bayesian prior–posterior transfer fitting strategy

Author

Listed:
  • Gerda Claeskens
  • Bernard W. Silverman
  • Leen Slaets

Abstract

Summary. Warping is an approach to the reduction and analysis of phase variability in functional observations, by applying a smooth bijection to the function argument. We propose a natural representation of warping functions in terms of a new type of elementary functions named ‘warping component functions’, or ‘warplets’, which are combined into the warping function by composition. The inverse warping function is trivial and explicit to obtain. A sequential Bayesian estimation strategy is introduced which fits a series of models and transfers the posterior of the previous fit into the prior of the next fit. Model selection is based on a warping analogue to wavelet thresholding, combined with Bayesian inference.

Suggested Citation

  • Gerda Claeskens & Bernard W. Silverman & Leen Slaets, 2010. "A multiresolution approach to time warping achieved by a Bayesian prior–posterior transfer fitting strategy," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 673-694, November.
  • Handle: RePEc:bla:jorssb:v:72:y:2010:i:5:p:673-694
    DOI: 10.1111/j.1467-9868.2010.00752.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2010.00752.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2010.00752.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kneip, Alois & Ramsay, James O, 2008. "Combining Registration and Fitting for Functional Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1155-1165.
    2. Telesca, Donatello & Inoue, Lurdes Y.T., 2008. "Bayesian Hierarchical Curve Registration," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 328-339, March.
    3. C. A. Glasbey & K. V. Mardia, 2001. "A penalized likelihood approach to image warping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 465-492.
    4. Xueli Liu & Hans-Georg Muller, 2004. "Functional Convex Averaging and Synchronization for Time-Warped Random Curves," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 687-699, January.
    5. Daniel Gervini & Theo Gasser, 2004. "Self‐modelling warping functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 959-971, November.
    6. Daniel Gervini, 2006. "Free‐knot spline smoothing for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(4), pages 671-687, September.
    7. Daniel Gervini & Theo Gasser, 2005. "Nonparametric maximum likelihood estimation of the structural mean of a sample of curves," Biometrika, Biometrika Trust, vol. 92(4), pages 801-820, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Slaets, Leen & Claeskens, Gerda & Silverman, Bernard W., 2013. "Warping Functional Data in R and C via a Bayesian Multiresolution Approach," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i03).
    2. Daniel Gervini & Patrick A. Carter, 2014. "Warped functional analysis of variance," Biometrics, The International Biometric Society, vol. 70(3), pages 526-535, September.
    3. Slaets, Leen & Claeskens, Gerda & Hubert, Mia, 2012. "Phase and amplitude-based clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2360-2374.
    4. Wagner, Heiko & Kneip, Alois, 2019. "Nonparametric registration to low-dimensional function spaces," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 49-63.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arribas-Gil, Ana & Müller, Hans-Georg, 2014. "Pairwise dynamic time warping for event data," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 255-268.
    2. Jason Cleveland & Wei Wu & Anuj Srivastava, 2016. "Norm-preserving constraint in the Fisher--Rao registration and its application in signal estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 338-359, June.
    3. Boudaoud, S. & Rix, H. & Meste, O., 2010. "Core Shape modelling of a set of curves," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 308-325, February.
    4. Daniel Gervini & Patrick A. Carter, 2014. "Warped functional analysis of variance," Biometrics, The International Biometric Society, vol. 70(3), pages 526-535, September.
    5. Tucker, J. Derek & Wu, Wei & Srivastava, Anuj, 2013. "Generative models for functional data using phase and amplitude separation," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 50-66.
    6. Zhang, Zhen & Müller, Hans-Georg, 2011. "Functional density synchronization," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2234-2249, July.
    7. Cleveland, Jason & Zhao, Weilong & Wu, Wei, 2018. "Robust template estimation for functional data with phase variability using band depth," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 10-26.
    8. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    9. Juhyun Park & Jeongyoun Ahn, 2017. "Clustering multivariate functional data with phase variation," Biometrics, The International Biometric Society, vol. 73(1), pages 324-333, March.
    10. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    11. Liu, Xueli & Yang, Mark C.K., 2009. "Simultaneous curve registration and clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1361-1376, February.
    12. Niels Lundtorp Olsen & Bo Markussen & Lars Lau Raket, 2018. "Simultaneous inference for misaligned multivariate functional data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1147-1176, November.
    13. Donatello Telesca & Lurdes Y.T. Inoue & Mauricio Neira & Ruth Etzioni & Martin Gleave & Colleen Nelson, 2009. "Differential Expression and Network Inferences through Functional Data Modeling," Biometrics, The International Biometric Society, vol. 65(3), pages 793-804, September.
    14. Irene Albarrán-Lozano & Pablo J. Alonso-González & Ana Arribas-Gil, 2017. "Dependence evolution in the Spanish disabled population: a functional data analysis approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 657-677, February.
    15. Sangalli, Laura M. & Secchi, Piercesare & Vantini, Simone & Vitelli, Valeria, 2010. "k-mean alignment for curve clustering," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1219-1233, May.
    16. A. K. S. Alshabani & I. L. Dryden & C. D. Litton & J. Richardson, 2007. "Bayesian analysis of human movement curves," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(4), pages 415-428, August.
    17. Wagner, Heiko & Kneip, Alois, 2019. "Nonparametric registration to low-dimensional function spaces," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 49-63.
    18. Derek Tucker, J. & Shand, Lyndsay & Chowdhary, Kenny, 2021. "Multimodal Bayesian registration of noisy functions using Hamiltonian Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    19. Simone Vantini, 2012. "On the definition of phase and amplitude variability in functional data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 676-696, December.
    20. Hans-Georg Müller & Wenjing Yang, 2010. "Dynamic relations for sparsely sampled Gaussian processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 1-29, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:72:y:2010:i:5:p:673-694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.