IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v163y2021ics0167947321001328.html
   My bibliography  Save this article

Multimodal Bayesian registration of noisy functions using Hamiltonian Monte Carlo

Author

Listed:
  • Derek Tucker, J.
  • Shand, Lyndsay
  • Chowdhary, Kenny

Abstract

Functional data registration is a necessary processing step for many applications. The observed data can be inherently noisy, often due to measurement error or natural process uncertainty; which most functional alignment methods cannot handle. A pair of functions can also have multiple optimal alignment solutions, which is not addressed in current literature. In this paper, a flexible Bayesian approach to functional alignment is presented, which appropriately accounts for noise in the data without any pre-smoothing required. Additionally, by running parallel MCMC chains, the method can account for multiple optimal alignments via the multi-modal posterior distribution of the warping functions. To most efficiently sample the warping functions, the approach relies on a modification of the standard Hamiltonian Monte Carlo to be well-defined on the infinite-dimensional Hilbert space. This flexible Bayesian alignment method is applied to both simulated data and real data sets to show its efficiency in handling noisy functions and successfully accounting for multiple optimal alignments in the posterior; characterizing the uncertainty surrounding the warping functions.

Suggested Citation

  • Derek Tucker, J. & Shand, Lyndsay & Chowdhary, Kenny, 2021. "Multimodal Bayesian registration of noisy functions using Hamiltonian Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
  • Handle: RePEc:eee:csdana:v:163:y:2021:i:c:s0167947321001328
    DOI: 10.1016/j.csda.2021.107298
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947321001328
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sebastian Kurtek & Anuj Srivastava & Eric Klassen & Zhaohua Ding, 2012. "Statistical Modeling of Curves Using Shapes and Related Features," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1152-1165, September.
    2. Kneip, Alois & Ramsay, James O, 2008. "Combining Registration and Fitting for Functional Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1155-1165.
    3. Beskos, A. & Pinski, F.J. & Sanz-Serna, J.M. & Stuart, A.M., 2011. "Hybrid Monte Carlo on Hilbert spaces," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2201-2230, October.
    4. Tucker, J. Derek & Wu, Wei & Srivastava, Anuj, 2013. "Generative models for functional data using phase and amplitude separation," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 50-66.
    5. Telesca, Donatello & Inoue, Lurdes Y.T., 2008. "Bayesian Hierarchical Curve Registration," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 328-339, March.
    6. Julia Wrobel & Vadim Zipunnikov & Jennifer Schrack & Jeff Goldsmith, 2019. "Registration for exponential family functional data," Biometrics, The International Biometric Society, vol. 75(1), pages 48-57, March.
    7. Weiyi Xie & Sebastian Kurtek & Karthik Bharath & Ying Sun, 2017. "A Geometric Approach to Visualization of Variability in Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 979-993, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Yijia & Zhou, Xinyu & Wu, Wei, 2024. "A stochastic process representation for time warping functions," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niels Lundtorp Olsen & Bo Markussen & Lars Lau Raket, 2018. "Simultaneous inference for misaligned multivariate functional data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1147-1176, November.
    2. Juhyun Park & Jeongyoun Ahn, 2017. "Clustering multivariate functional data with phase variation," Biometrics, The International Biometric Society, vol. 73(1), pages 324-333, March.
    3. Arribas-Gil, Ana & Müller, Hans-Georg, 2014. "Pairwise dynamic time warping for event data," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 255-268.
    4. Jason Cleveland & Wei Wu & Anuj Srivastava, 2016. "Norm-preserving constraint in the Fisher--Rao registration and its application in signal estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 338-359, June.
    5. Tucker, J. Derek & Wu, Wei & Srivastava, Anuj, 2013. "Generative models for functional data using phase and amplitude separation," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 50-66.
    6. Ma, Yijia & Zhou, Xinyu & Wu, Wei, 2024. "A stochastic process representation for time warping functions," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    7. Jorge R. Sosa Donoso & Miguel Flores & Salvador Naya & Javier Tarrío-Saavedra, 2023. "Local Correlation Integral Approach for Anomaly Detection Using Functional Data," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    8. Daniel Gervini & Patrick A. Carter, 2014. "Warped functional analysis of variance," Biometrics, The International Biometric Society, vol. 70(3), pages 526-535, September.
    9. Cleveland, Jason & Zhao, Weilong & Wu, Wei, 2018. "Robust template estimation for functional data with phase variability using band depth," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 10-26.
    10. Gerda Claeskens & Bernard W. Silverman & Leen Slaets, 2010. "A multiresolution approach to time warping achieved by a Bayesian prior–posterior transfer fitting strategy," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 673-694, November.
    11. Weiyi Xie & Sebastian Kurtek & Karthik Bharath & Ying Sun, 2017. "A Geometric Approach to Visualization of Variability in Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 979-993, July.
    12. Jihui Lee & Gen Li & William F. Christensen & Gavin Collins & Matthew Seeley & Anton E. Bowden & David T. Fullwood & Jeff Goldsmith, 2019. "Functional Data Analyses of Gait Data Measured Using In-Shoe Sensors," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 288-313, July.
    13. Maire, Florian & Moulines, Eric & Lefebvre, Sidonie, 2017. "Online EM for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 27-47.
    14. Zhuo Qu & Wenlin Dai & Marc G. Genton, 2021. "Robust functional multivariate analysis of variance with environmental applications," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.
    15. Donatello Telesca & Lurdes Y.T. Inoue & Mauricio Neira & Ruth Etzioni & Martin Gleave & Colleen Nelson, 2009. "Differential Expression and Network Inferences through Functional Data Modeling," Biometrics, The International Biometric Society, vol. 65(3), pages 793-804, September.
    16. Irene Albarrán-Lozano & Pablo J. Alonso-González & Ana Arribas-Gil, 2017. "Dependence evolution in the Spanish disabled population: a functional data analysis approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 657-677, February.
    17. Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.
    18. Sangalli, Laura M. & Secchi, Piercesare & Vantini, Simone & Vitelli, Valeria, 2010. "k-mean alignment for curve clustering," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1219-1233, May.
    19. Christian Genest & Johanna G. Nešlehová, 2014. "A Conversation with James O. Ramsay," International Statistical Review, International Statistical Institute, vol. 82(2), pages 161-183, August.
    20. Boudaoud, S. & Rix, H. & Meste, O., 2010. "Core Shape modelling of a set of curves," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 308-325, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:163:y:2021:i:c:s0167947321001328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.