IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v180y2017i2p657-677.html
   My bibliography  Save this article

Dependence evolution in the Spanish disabled population: a functional data analysis approach

Author

Listed:
  • Irene Albarrán-Lozano
  • Pablo J. Alonso-González
  • Ana Arribas-Gil

Abstract

No abstract is available for this item.

Suggested Citation

  • Irene Albarrán-Lozano & Pablo J. Alonso-González & Ana Arribas-Gil, 2017. "Dependence evolution in the Spanish disabled population: a functional data analysis approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 657-677, February.
  • Handle: RePEc:bla:jorssa:v:180:y:2017:i:2:p:657-677
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssa.12228
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kneip, Alois & Ramsay, James O, 2008. "Combining Registration and Fitting for Functional Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1155-1165.
    2. Arribas-Gil, Ana & Müller, Hans-Georg, 2014. "Pairwise dynamic time warping for event data," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 255-268.
    3. England, Peter & Verrall, Richard, 1999. "Analytic and bootstrap estimates of prediction errors in claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 281-293, December.
    4. Xueli Liu & Hans-Georg Muller, 2004. "Functional Convex Averaging and Synchronization for Time-Warped Random Curves," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 687-699, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William Lim & Gaurav Khemka & David Pitt & Bridget Browne, 2019. "A method for calculating the implied no-recovery three-state transition matrix using observable population mortality incidence and disability prevalence rates among the elderly," Journal of Population Research, Springer, vol. 36(3), pages 245-282, September.
    2. Manuel Ventura-Marco & Carlos Vidal-Meliá & Juan Manuel Pérez-Salamero González, 2022. "Life care annuities to help couples cope with the cost of long-term care," Documentos de Trabajo del ICAE 2022-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    3. Alonso González, Pablo J., 2017. "Estimating life expectancy free of dependency : group characterization through the proximity to the deepest dependency path," DES - Working Papers. Statistics and Econometrics. WS 24672, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Ventura-Marco, Manuel & Vidal-Meliá, Carlos & Pérez-Salamero González, Juan Manuel, 2023. "Joint life care annuities to help retired couples to finance the cost of long-term care," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 122-139.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alonso González, Pablo, 2013. "Dependency evolution in Spanish disabled population : a functional data analysis approach," DES - Working Papers. Statistics and Econometrics. WS ws130403, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Arribas-Gil, Ana & Müller, Hans-Georg, 2014. "Pairwise dynamic time warping for event data," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 255-268.
    3. Arribas-Gil Ana & Matias Catherine, 2017. "A time warping approach to multiple sequence alignment," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(2), pages 133-144, April.
    4. Jason Cleveland & Wei Wu & Anuj Srivastava, 2016. "Norm-preserving constraint in the Fisher--Rao registration and its application in signal estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 338-359, June.
    5. Tucker, J. Derek & Wu, Wei & Srivastava, Anuj, 2013. "Generative models for functional data using phase and amplitude separation," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 50-66.
    6. Cleveland, Jason & Zhao, Weilong & Wu, Wei, 2018. "Robust template estimation for functional data with phase variability using band depth," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 10-26.
    7. Juhyun Park & Jeongyoun Ahn, 2017. "Clustering multivariate functional data with phase variation," Biometrics, The International Biometric Society, vol. 73(1), pages 324-333, March.
    8. Gerda Claeskens & Bernard W. Silverman & Leen Slaets, 2010. "A multiresolution approach to time warping achieved by a Bayesian prior–posterior transfer fitting strategy," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 673-694, November.
    9. Simone Vantini, 2012. "On the definition of phase and amplitude variability in functional data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 676-696, December.
    10. England, Peter, 2002. "Addendum to "Analytic and bootstrap estimates of prediction errors in claims reserving"," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 461-466, December.
    11. Gian Paolo Clemente & Nino Savelli & Diego Zappa, 2019. "Modelling Outstanding Claims with Mixed Compound Processes in Insurance," International Business Research, Canadian Center of Science and Education, vol. 12(3), pages 123-138, March.
    12. Mingfei Dong & Donatello Telesca & Catherine Sugar & Frederick Shic & Adam Naples & Scott P. Johnson & Beibin Li & Adham Atyabi & Minhang Xie & Sara J. Webb & Shafali Jeste & Susan Faja & April R. Lev, 2023. "A Functional Model for Studying Common Trends Across Trial Time in Eye Tracking Experiments," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 261-287, April.
    13. Pitselis, Georgios & Grigoriadou, Vasiliki & Badounas, Ioannis, 2015. "Robust loss reserving in a log-linear model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 14-27.
    14. Rachdi, Mustapha & Laksaci, Ali & Demongeot, Jacques & Abdali, Abdel & Madani, Fethi, 2014. "Theoretical and practical aspects of the quadratic error in the local linear estimation of the conditional density for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 53-68.
    15. Niels Lundtorp Olsen & Bo Markussen & Lars Lau Raket, 2018. "Simultaneous inference for misaligned multivariate functional data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1147-1176, November.
    16. D. Kuang & B. Nielsen, 2018. "Generalized Log-Normal Chain-Ladder," Papers 1806.05939, arXiv.org.
    17. Álvarez-Jareño, José Antonio & Coll-Serrano, Vicente, 2012. "Estimación de reservas en una compañía aseguradora. Una aplicación en Excel del método Chain-Ladder y Bootstrap || Estimating the Reserves in Insurance Companies: An Excel Application of the Chain-Lad," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 14(1), pages 124-136, December.
    18. Koissi, Marie-Claire & Shapiro, Arnold F. & Hognas, Goran, 2006. "Evaluating and extending the Lee-Carter model for mortality forecasting: Bootstrap confidence interval," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 1-20, February.
    19. Carnevale Giulio Ercole & Clemente Gian Paolo, 2020. "A Bayesian Internal Model for Reserve Risk: An Extension of the Correlated Chain Ladder," Risks, MDPI, vol. 8(4), pages 1-20, November.
    20. Aleksandra Rutkowska & Magdalena Szyszko, 2022. "New DTW Windows Type for Forward- and Backward-Lookingness Examination. Application for Inflation Expectation," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 701-718, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:180:y:2017:i:2:p:657-677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.