IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i4p1361-1376.html
   My bibliography  Save this article

Simultaneous curve registration and clustering for functional data

Author

Listed:
  • Liu, Xueli
  • Yang, Mark C.K.

Abstract

Study of dynamic processes in many areas of science has led to the appearance of functional data sets. It is often the case that individual trajectories vary both in the amplitude space and in the time space. We develop a coherent clustering procedure that allows for temporal aligning. Under this framework, closed form solutions of an EM type learning algorithm are derived. The method can be applied to all types of curve data but is particularly useful when phase variation is present. We demonstrate the method by both simulation studies and an application to human growth curves.

Suggested Citation

  • Liu, Xueli & Yang, Mark C.K., 2009. "Simultaneous curve registration and clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1361-1376, February.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:1361-1376
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00558-6
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeng‐Min Chiou & Pai‐Ling Li, 2007. "Functional clustering and identifying substructures of longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 679-699, September.
    2. Lyndia C. Brumback & Mary J. Lindstrom, 2004. "Self Modeling with Flexible, Random Time Transformations," Biometrics, The International Biometric Society, vol. 60(2), pages 461-470, June.
    3. Birgitte B. Rønn, 2001. "Nonparametric maximum likelihood estimation for shifted curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 243-259.
    4. Xueli Liu & Hans-Georg Muller, 2004. "Functional Convex Averaging and Synchronization for Time-Warped Random Curves," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 687-699, January.
    5. Luis Angel Garcia-Escudero & Alfonso Gordaliza, 2005. "A Proposal for Robust Curve Clustering," Journal of Classification, Springer;The Classification Society, vol. 22(2), pages 185-201, September.
    6. Fraley C. & Raftery A.E., 2002. "Model-Based Clustering, Discriminant Analysis, and Density Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 611-631, June.
    7. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    8. Daniel Gervini & Theo Gasser, 2004. "Self‐modelling warping functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 959-971, November.
    9. Tarpey, Thaddeus, 2007. "Linear Transformations and the k-Means Clustering Algorithm: Applications to Clustering Curves," The American Statistician, American Statistical Association, vol. 61, pages 34-40, February.
    10. James G.M. & Sugar C.A., 2003. "Clustering for Sparsely Sampled Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 397-408, January.
    11. Serban, Nicoleta & Wasserman, Larry, 2005. "CATS: Clustering After Transformation and Smoothing," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 990-999, September.
    12. Daniel Gervini & Theo Gasser, 2005. "Nonparametric maximum likelihood estimation of the structural mean of a sample of curves," Biometrika, Biometrika Trust, vol. 92(4), pages 801-820, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huaihou Chen & Donglin Zeng, 2014. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1350-1353, December.
    2. Deb, Soudeep & Karmakar, Sayar, 2023. "A novel spatio-temporal clustering algorithm with applications on COVID-19 data from the United States," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    3. Maire, Florian & Moulines, Eric & Lefebvre, Sidonie, 2017. "Online EM for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 27-47.
    4. Wu, Zizhen & Hitchcock, David B., 2016. "A Bayesian method for simultaneous registration and clustering of functional observations," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 121-136.
    5. Kim, Joonpyo & Oh, Hee-Seok, 2020. "Pseudo-quantile functional data clustering," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    6. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    7. Qingzhi Zhong & Huazhen Lin & Yi Li, 2021. "Cluster non‐Gaussian functional data," Biometrics, The International Biometric Society, vol. 77(3), pages 852-865, September.
    8. Allou Samé & Faicel Chamroukhi & Gérard Govaert & Patrice Aknin, 2011. "Model-based clustering and segmentation of time series with changes in regime," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 301-321, December.
    9. Andrea Martino & Andrea Ghiglietti & Francesca Ieva & Anna Maria Paganoni, 2019. "A k-means procedure based on a Mahalanobis type distance for clustering multivariate functional data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 301-322, June.
    10. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    11. Sangalli, Laura M. & Secchi, Piercesare & Vantini, Simone & Vitelli, Valeria, 2010. "k-mean alignment for curve clustering," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1219-1233, May.
    12. Shan Zhong & David B. Hitchcock, 2024. "Functional clustering of fictional narratives using Vonnegut curves," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(4), pages 1045-1066, December.
    13. Juhyun Park & Jeongyoun Ahn, 2017. "Clustering multivariate functional data with phase variation," Biometrics, The International Biometric Society, vol. 73(1), pages 324-333, March.
    14. Jacques, Julien & Preda, Cristian, 2014. "Model-based clustering for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 92-106.
    15. Slaets, Leen & Claeskens, Gerda & Hubert, Mia, 2012. "Phase and amplitude-based clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2360-2374.
    16. Jan Vávra & Arnošt Komárek, 2023. "Classification based on multivariate mixed type longitudinal data with an application to the EU-SILC database," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 369-406, June.
    17. Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    2. Slaets, Leen & Claeskens, Gerda & Hubert, Mia, 2012. "Phase and amplitude-based clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2360-2374.
    3. Boudaoud, S. & Rix, H. & Meste, O., 2010. "Core Shape modelling of a set of curves," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 308-325, February.
    4. Juhyun Park & Jeongyoun Ahn, 2017. "Clustering multivariate functional data with phase variation," Biometrics, The International Biometric Society, vol. 73(1), pages 324-333, March.
    5. Coffey, N. & Hinde, J. & Holian, E., 2014. "Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 14-29.
    6. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    7. Stefano Tonellato & Andrea Pastore, 2013. "On the comparison of model-based clustering solutions," Working Papers 2013:05, Department of Economics, University of Venice "Ca' Foscari".
    8. Arribas-Gil, Ana & Müller, Hans-Georg, 2014. "Pairwise dynamic time warping for event data," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 255-268.
    9. Jason Cleveland & Wei Wu & Anuj Srivastava, 2016. "Norm-preserving constraint in the Fisher--Rao registration and its application in signal estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 338-359, June.
    10. Daniel Gervini & Patrick A. Carter, 2014. "Warped functional analysis of variance," Biometrics, The International Biometric Society, vol. 70(3), pages 526-535, September.
    11. Zhang, Zhen & Müller, Hans-Georg, 2011. "Functional density synchronization," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2234-2249, July.
    12. Cho, Haeran & Goude, Yannig & Brossat, Xavier & Yao, Qiwei, 2013. "Modeling and forecasting daily electricity load curves: a hybrid approach," LSE Research Online Documents on Economics 49634, London School of Economics and Political Science, LSE Library.
    13. Vogt, Michael & Linton, Oliver, 2020. "Multiscale clustering of nonparametric regression curves," Journal of Econometrics, Elsevier, vol. 216(1), pages 305-325.
    14. Gerda Claeskens & Bernard W. Silverman & Leen Slaets, 2010. "A multiresolution approach to time warping achieved by a Bayesian prior–posterior transfer fitting strategy," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 673-694, November.
    15. Carlos Barrera-Causil & Juan Carlos Correa & Andrew Zamecnik & Francisco Torres-Avilés & Fernando Marmolejo-Ramos, 2021. "An FDA-Based Approach for Clustering Elicited Expert Knowledge," Stats, MDPI, vol. 4(1), pages 1-21, March.
    16. Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
    17. Wu, Han-Ming, 2011. "On biological validity indices for soft clustering algorithms for gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1969-1979, May.
    18. Michael Vogt & Oliver Linton, 2015. "Classification of nonparametric regression functions in heterogeneous panels," CeMMAP working papers 06/15, Institute for Fiscal Studies.
    19. Donatello Telesca & Lurdes Y.T. Inoue & Mauricio Neira & Ruth Etzioni & Martin Gleave & Colleen Nelson, 2009. "Differential Expression and Network Inferences through Functional Data Modeling," Biometrics, The International Biometric Society, vol. 65(3), pages 793-804, September.
    20. Shaikh Mateen & McNicholas Paul D & Desmond Anthony F, 2010. "A Pseudo-EM Algorithm for Clustering Incomplete Longitudinal Data," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-17, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:1361-1376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.