IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v56y2007i4p415-428.html
   My bibliography  Save this article

Bayesian analysis of human movement curves

Author

Listed:
  • A. K. S. Alshabani
  • I. L. Dryden
  • C. D. Litton
  • J. Richardson

Abstract

Summary. We consider the Bayesian analysis of human movement data, where the subjects perform various reaching tasks. A set of markers is placed on each subject and a system of cameras records the three‐dimensional Cartesian co‐ordinates of the markers during the reaching movement. It is of interest to describe the mean and variability of the curves that are traced by the markers during one reaching movement, and to identify any differences due to covariates. We propose a methodology based on a hierarchical Bayesian model for the curves. An important part of the method is to obtain identifiable features of the movement so that different curves can be compared after temporal warping. We consider four landmarks and a set of equally spaced pseudolandmarks are located in between. We demonstrate that the algorithm works well in locating the landmarks, and shape analysis techniques are used to describe the posterior distribution of the mean curve. A feature of this type of data is that some parts of the movement data may be missing—the Bayesian methodology is easily adapted to cope with this situation.

Suggested Citation

  • A. K. S. Alshabani & I. L. Dryden & C. D. Litton & J. Richardson, 2007. "Bayesian analysis of human movement curves," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(4), pages 415-428, August.
  • Handle: RePEc:bla:jorssc:v:56:y:2007:i:4:p:415-428
    DOI: 10.1111/j.1467-9876.2007.00584.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2007.00584.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2007.00584.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel Gervini & Theo Gasser, 2004. "Self‐modelling warping functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 959-971, November.
    2. Daniel Gervini & Theo Gasser, 2005. "Nonparametric maximum likelihood estimation of the structural mean of a sample of curves," Biometrika, Biometrika Trust, vol. 92(4), pages 801-820, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jason Cleveland & Wei Wu & Anuj Srivastava, 2016. "Norm-preserving constraint in the Fisher--Rao registration and its application in signal estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 338-359, June.
    2. Boudaoud, S. & Rix, H. & Meste, O., 2010. "Core Shape modelling of a set of curves," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 308-325, February.
    3. Daniel Gervini & Patrick A. Carter, 2014. "Warped functional analysis of variance," Biometrics, The International Biometric Society, vol. 70(3), pages 526-535, September.
    4. Zhang, Zhen & Müller, Hans-Georg, 2011. "Functional density synchronization," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2234-2249, July.
    5. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    6. Gerda Claeskens & Bernard W. Silverman & Leen Slaets, 2010. "A multiresolution approach to time warping achieved by a Bayesian prior–posterior transfer fitting strategy," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 673-694, November.
    7. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    8. Liu, Xueli & Yang, Mark C.K., 2009. "Simultaneous curve registration and clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1361-1376, February.
    9. Niels Lundtorp Olsen & Bo Markussen & Lars Lau Raket, 2018. "Simultaneous inference for misaligned multivariate functional data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1147-1176, November.
    10. Arribas-Gil, Ana & Müller, Hans-Georg, 2014. "Pairwise dynamic time warping for event data," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 255-268.
    11. Donatello Telesca & Lurdes Y.T. Inoue & Mauricio Neira & Ruth Etzioni & Martin Gleave & Colleen Nelson, 2009. "Differential Expression and Network Inferences through Functional Data Modeling," Biometrics, The International Biometric Society, vol. 65(3), pages 793-804, September.
    12. Slaets, Leen & Claeskens, Gerda & Silverman, Bernard W., 2013. "Warping Functional Data in R and C via a Bayesian Multiresolution Approach," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i03).
    13. Grith, Maria & Härdle, Wolfgang Karl & Park, Juhyun, 2009. "Shape invariant modelling pricing kernels and risk aversion," SFB 649 Discussion Papers 2009-041, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Sangalli, Laura M. & Secchi, Piercesare & Vantini, Simone & Vitelli, Valeria, 2010. "k-mean alignment for curve clustering," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1219-1233, May.
    15. Tucker, J. Derek & Wu, Wei & Srivastava, Anuj, 2013. "Generative models for functional data using phase and amplitude separation," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 50-66.
    16. Wagner, Heiko & Kneip, Alois, 2019. "Nonparametric registration to low-dimensional function spaces," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 49-63.
    17. Ma, Yijia & Zhou, Xinyu & Wu, Wei, 2024. "A stochastic process representation for time warping functions," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    18. Cleveland, Jason & Zhao, Weilong & Wu, Wei, 2018. "Robust template estimation for functional data with phase variability using band depth," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 10-26.
    19. Juhyun Park & Jeongyoun Ahn, 2017. "Clustering multivariate functional data with phase variation," Biometrics, The International Biometric Society, vol. 73(1), pages 324-333, March.
    20. Gottlieb, Andrea & Müller, Hans-Georg, 2012. "A stickiness coefficient for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4000-4010.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:56:y:2007:i:4:p:415-428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.