Fourier analysis of irregularly spaced data on Rd
Author
Abstract
Suggested Citation
DOI: 10.1111/j.1467-9868.2008.00685.x
Download full text from publisher
References listed on IDEAS
- Fuentes, Montserrat, 2007. "Approximate Likelihood for Large Irregularly Spaced Spatial Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 321-331, March.
- Engle, Robert F, 1974.
"Band Spectrum Regression,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 15(1), pages 1-11, February.
- R. F. Engle, 1972. "Band Spectrum Regressions," Working papers 96, Massachusetts Institute of Technology (MIT), Department of Economics.
- Michael L. Stein & Zhiyi Chi & Leah J. Welty, 2004. "Approximating likelihoods for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 275-296, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Soutir Bandyopadhyay & Suhasini Subba Rao, 2017. "A test for stationarity for irregularly spaced spatial data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 95-123, January.
- Tata Subba Rao & Granville Tunnicliffe Wilson & Soutir Bandyopadhyay & Carsten Jentsch & Suhasini Subba Rao, 2017. "A Spectral Domain Test for Stationarity of Spatio-Temporal Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 326-351, March.
- Delgado, Miguel A. & Robinson, Peter M., 2015.
"Non-nested testing of spatial correlation,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 385-401.
- Delgado, Miguel A. & Robinson, Peter M., 2013. "Non-nested testing of spatial correlation," LSE Research Online Documents on Economics 58169, London School of Economics and Political Science, LSE Library.
- Miguel A. Delgado & Peter M Robinson, 2013. "Non-Nested Testing of Spatial Correlation," STICERD - Econometrics Paper Series 568, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Delgado, Miguel A. & Robinson, Peter, 2015. "Non-nested testing of spatial correlation," LSE Research Online Documents on Economics 61433, London School of Economics and Political Science, LSE Library.
- Sam Efromovich, 2014. "Efficient Non-Parametric Estimation Of The Spectral Density In The Presence Of Missing Observations," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 407-427, August.
- Giovanna Jona Lasinio & Gianluca Mastrantonio & Alessio Pollice, 2013. "Discussing the “big n problem”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 97-112, March.
- Kurisu, Daisuke, 2019. "On nonparametric inference for spatial regression models under domain expanding and infill asymptotics," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
- Gupta, Abhimanyu, 2018.
"Autoregressive spatial spectral estimates,"
Journal of Econometrics, Elsevier, vol. 203(1), pages 80-95.
- Gupta, A, 2015. "Autoregressive Spatial Spectral Estimates," Economics Discussion Papers 23825, University of Essex, Department of Economics.
- Chen, Kun & Chan, Ngai Hang & Yau, Chun Yip & Hu, Jie, 2023. "Penalized Whittle likelihood for spatial data," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
- Robinson, Peter, 2019. "Spatial long memory," LSE Research Online Documents on Economics 102182, London School of Economics and Political Science, LSE Library.
- Salim Bouzebda & Inass Soukarieh, 2022. "Non-Parametric Conditional U -Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design," Mathematics, MDPI, vol. 11(1), pages 1-69, December.
- repec:cep:stiecm:/2013/568 is not listed on IDEAS
- Salim Bouzebda, 2024. "Limit Theorems in the Nonparametric Conditional Single-Index U -Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design," Mathematics, MDPI, vol. 12(13), pages 1-81, June.
- Arthur P. Guillaumin & Adam M. Sykulski & Sofia C. Olhede & Frederik J. Simons, 2022. "The Debiased Spatial Whittle likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1526-1557, September.
- Gupta, A, 2015. "Autoregressive Spatial Spectral Estimates," Economics Discussion Papers 14458, University of Essex, Department of Economics.
- Zhang, Shibin, 2020. "Nonparametric Bayesian inference for the spectral density based on irregularly spaced data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
- Yasumasa Matsuda, 2013. "Generalized Whittle Estimate For Nonstationary Spatial Data," TERG Discussion Papers 305, Graduate School of Economics and Management, Tohoku University.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
- Chen, Kun & Chan, Ngai Hang & Yau, Chun Yip & Hu, Jie, 2023. "Penalized Whittle likelihood for spatial data," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
- repec:cep:stiecm:/2013/568 is not listed on IDEAS
- Delgado, Miguel A. & Robinson, Peter M., 2015.
"Non-nested testing of spatial correlation,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 385-401.
- Miguel A. Delgado & Peter M Robinson, 2013. "Non-Nested Testing of Spatial Correlation," STICERD - Econometrics Paper Series 568, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Delgado, Miguel A. & Robinson, Peter M., 2013. "Non-nested testing of spatial correlation," LSE Research Online Documents on Economics 58169, London School of Economics and Political Science, LSE Library.
- Delgado, Miguel A. & Robinson, Peter, 2015. "Non-nested testing of spatial correlation," LSE Research Online Documents on Economics 61433, London School of Economics and Political Science, LSE Library.
- Eidsvik, Jo & Finley, Andrew O. & Banerjee, Sudipto & Rue, Håvard, 2012. "Approximate Bayesian inference for large spatial datasets using predictive process models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1362-1380.
- Sudipto Banerjee & Alan E. Gelfand & Andrew O. Finley & Huiyan Sang, 2008. "Gaussian predictive process models for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 825-848, September.
- Giovanna Jona Lasinio & Gianluca Mastrantonio & Alessio Pollice, 2013. "Discussing the “big n problem”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 97-112, March.
- Arthur P. Guillaumin & Adam M. Sykulski & Sofia C. Olhede & Frederik J. Simons, 2022. "The Debiased Spatial Whittle likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1526-1557, September.
- Jun, Mikyoung, 2014. "Matérn-based nonstationary cross-covariance models for global processes," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 134-146.
- Litvinenko, Alexander & Sun, Ying & Genton, Marc G. & Keyes, David E., 2019. "Likelihood approximation with hierarchical matrices for large spatial datasets," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 115-132.
- Andrew O. Finley & Sudipto Banerjee & Patrik Waldmann & Tore Ericsson, 2009. "Hierarchical Spatial Modeling of Additive and Dominance Genetic Variance for Large Spatial Trial Datasets," Biometrics, The International Biometric Society, vol. 65(2), pages 441-451, June.
- Padoan, Simone A. & Bevilacqua, Moreno, 2015. "Analysis of Random Fields Using CompRandFld," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i09).
- Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
- Matthias Katzfuss, 2017. "A Multi-Resolution Approximation for Massive Spatial Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 201-214, January.
- Schmidt, Paul & Mühlau, Mark & Schmid, Volker, 2017. "Fitting large-scale structured additive regression models using Krylov subspace methods," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 59-75.
- Faria, Gonçalo & Verona, Fabio, 2023. "Forecast combination in the frequency domain," Bank of Finland Research Discussion Papers 1/2023, Bank of Finland.
- Andersson, Fredrik N.G. & Edgerton, David L. & Opper, Sonja, 2013.
"A Matter of Time: Revisiting Growth Convergence in China,"
World Development, Elsevier, vol. 45(C), pages 239-251.
- Andersson, Fredrik N. G. & Edgerton, David & Opper, Sonja, 2011. "A Matter of Time: Revisiting Growth Convergence in China," Working Papers 2011:23, Lund University, Department of Economics, revised 01 Mar 2012.
- Poterba, James M. & Summers, Lawrence H., 1983.
"Dividend taxes, corporate investment, and `Q',"
Journal of Public Economics, Elsevier, vol. 22(2), pages 135-167, November.
- James M. Poterba & Lawrence H. Summers, 1981. "Dividend Taxes, Corporate Investment, and "Q"," NBER Working Papers 0829, National Bureau of Economic Research, Inc.
- Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
- Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
- Noel Cressie & Gardar Johannesson, 2008. "Fixed rank kriging for very large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 209-226, February.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:71:y:2009:i:1:p:191-217. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.