IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/61433.html
   My bibliography  Save this paper

Non-nested testing of spatial correlation

Author

Listed:
  • Delgado, Miguel A.
  • Robinson, Peter

Abstract

We develop non-nested tests in a general spatial, spatio-temporal or panel data context. The spatial aspect can be interpreted quite generally, in either a geographical sense, or employing notions of economic distance, or when parametric modelling arises in part from a common factor or other structure. In the former case, observations may be regularly-spaced across one or more dimensions, as is typical with much spatio-temporal data, or irregularly-spaced across all dimensions; both isotropic models and non-isotropic models can be considered, and a wide variety of correlation structures. In the second case, models involving spatial weight matrices are covered, such as “spatial autoregressive models”. The setting is sufficiently general to potentially cover other parametric structures such as certain factor models, and vector-valued observations, and here our preliminary asymptotic theory for parameter estimates is of some independent value. The test statistic is based on a Gaussian pseudo-likelihood ratio, and is shown to have an asymptotic standard normal distribution under the null hypothesis that one of the two models is correct; this limit theory rests strongly on a central limit theorem for the Gaussian pseudo-maximum likelihood parameter estimates. A small Monte Carlo study of finite-sample performance is included.

Suggested Citation

  • Delgado, Miguel A. & Robinson, Peter, 2015. "Non-nested testing of spatial correlation," LSE Research Online Documents on Economics 61433, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:61433
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/61433/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fuentes, Montserrat, 2007. "Approximate Likelihood for Large Irregularly Spaced Spatial Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 321-331, March.
    2. Robinson, P.M., 2010. "Efficient estimation of the semiparametric spatial autoregressive model," Journal of Econometrics, Elsevier, vol. 157(1), pages 6-17, July.
    3. Peter Robinson, 2011. "Asymptotic theory for nonparametric regression with spatial data," CeMMAP working papers CWP11/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Michael L. Stein & Zhiyi Chi & Leah J. Welty, 2004. "Approximating likelihoods for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 275-296, May.
    5. Dunsmuir, W., 1983. "A central limit theorem for estimation in Gaussian stationary time series observed at unequally spaced times," Stochastic Processes and their Applications, Elsevier, vol. 14(3), pages 279-295, March.
    6. Peter Burridge, 2012. "Improving the J Test in the SARAR Model by Likelihood-based Estimation," Spatial Economic Analysis, Taylor & Francis Journals, vol. 7(1), pages 75-107, March.
    7. Robinson, P. M., 1977. "Estimation of a time series model from unequally spaced data," Stochastic Processes and their Applications, Elsevier, vol. 6(1), pages 9-24, November.
    8. Kelejian, Harry H. & Piras, Gianfranco, 2011. "An extension of Kelejian's J-test for non-nested spatial models," Regional Science and Urban Economics, Elsevier, vol. 41(3), pages 281-292, May.
    9. Peter Burridge & Bernard Fingleton, 2010. "Bootstrap Inference in Spatial Econometrics: the J-test," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 93-119.
    10. Yasumasa Matsuda & Yoshihiro Yajima, 2009. "Fourier analysis of irregularly spaced data on Rd," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 191-217, January.
    11. Robinson, P.M., 2011. "Asymptotic theory for nonparametric regression with spatial data," Journal of Econometrics, Elsevier, vol. 165(1), pages 5-19.
    12. Jin, Fei & Lee, Lung-fei, 2013. "Cox-type tests for competing spatial autoregressive models with spatial autoregressive disturbances," Regional Science and Urban Economics, Elsevier, vol. 43(4), pages 590-616.
    13. LeSage, James P. & Kelley Pace, R., 2007. "A matrix exponential spatial specification," Journal of Econometrics, Elsevier, vol. 140(1), pages 190-214, September.
    14. Han, Xiaoyi & Lee, Lung-fei, 2013. "Model selection using J-test for the spatial autoregressive model vs. the matrix exponential spatial model," Regional Science and Urban Economics, Elsevier, vol. 43(2), pages 250-271.
    15. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    16. Harry Kelejian, 2008. "A spatial J-test for model specification against a single or a set of non-nested alternatives," Letters in Spatial and Resource Sciences, Springer, vol. 1(1), pages 3-11, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gupta, Abhimanyu & Robinson, Peter M., 2018. "Pseudo maximum likelihood estimation of spatial autoregressive models with increasing dimension," Journal of Econometrics, Elsevier, vol. 202(1), pages 92-107.
    2. Francesca Rossi & Peter M. Robinson, 2020. "Higher-Order Least Squares Inference for Spatial Autoregressions," Working Papers 04/2020, University of Verona, Department of Economics.
    3. Jakub Olejnik & Alicja Olejnik, 2020. "QML estimation with non-summable weight matrices," Journal of Geographical Systems, Springer, vol. 22(4), pages 469-495, October.
    4. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    5. Rossi, Francesca & Robinson, Peter M., 2023. "Higher-order least squares inference for spatial autoregressions," Journal of Econometrics, Elsevier, vol. 232(1), pages 244-269.
    6. Gupta, Abhimanyu, 2018. "Autoregressive spatial spectral estimates," Journal of Econometrics, Elsevier, vol. 203(1), pages 80-95.
    7. Rossi, Francesca & Lieberman, Offer, 2023. "Spatial autoregressions with an extended parameter space and similarity-based weights," Journal of Econometrics, Elsevier, vol. 235(2), pages 1770-1798.
    8. Jungyoon Lee & Peter C.B. Phillips & Francesca Rossi, 2020. "Consistent Misspecification Testing in Spatial Autoregressive Models," Cowles Foundation Discussion Papers 2256, Cowles Foundation for Research in Economics, Yale University.
    9. Abhimanyu Gupta & Xi Qu, 2021. "Consistent specification testing under spatial dependence," Papers 2101.10255, arXiv.org, revised Aug 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cep:stiecm:/2013/568 is not listed on IDEAS
    2. Han, Xiaoyi & Lee, Lung-fei, 2013. "Model selection using J-test for the spatial autoregressive model vs. the matrix exponential spatial model," Regional Science and Urban Economics, Elsevier, vol. 43(2), pages 250-271.
    3. Liu, Tuo & Lee, Lung-fei, 2019. "A likelihood ratio test for spatial model selection," Journal of Econometrics, Elsevier, vol. 213(2), pages 434-458.
    4. Gupta, Abhimanyu, 2018. "Autoregressive spatial spectral estimates," Journal of Econometrics, Elsevier, vol. 203(1), pages 80-95.
    5. Debarsy, Nicolas & Ertur, Cem, 2019. "Interaction matrix selection in spatial autoregressive models with an application to growth theory," Regional Science and Urban Economics, Elsevier, vol. 75(C), pages 49-69.
    6. Abhimanyu Gupta & Xi Qu, 2021. "Consistent specification testing under spatial dependence," Papers 2101.10255, arXiv.org, revised Aug 2022.
    7. Jin, Fei & Lee, Lung-fei, 2015. "On the bootstrap for Moran’s I test for spatial dependence," Journal of Econometrics, Elsevier, vol. 184(2), pages 295-314.
    8. Debarsy, Nicolas & LeSage, James, 2018. "Flexible dependence modeling using convex combinations of different types of connectivity structures," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 48-68.
    9. Jin, Fei & Lee, Lung-fei, 2013. "Cox-type tests for competing spatial autoregressive models with spatial autoregressive disturbances," Regional Science and Urban Economics, Elsevier, vol. 43(4), pages 590-616.
    10. Bernard Fingleton & Silvia Palombi, 2016. "Bootstrap J -Test for Panel Data Models with Spatially Dependent Error Components, a Spatial Lag and Additional Endogenous Variables," Spatial Economic Analysis, Taylor & Francis Journals, vol. 11(1), pages 7-26, March.
    11. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    12. Zhang, Xinyu & Yu, Jihai, 2018. "Spatial weights matrix selection and model averaging for spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 203(1), pages 1-18.
    13. Liangjun Su & Xi Qu, 2017. "Specification Test for Spatial Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 572-584, October.
    14. Gupta, Abhimanyu, 2023. "Efficient closed-form estimation of large spatial autoregressions," Journal of Econometrics, Elsevier, vol. 232(1), pages 148-167.
    15. Jenish, Nazgul, 2012. "Nonparametric spatial regression under near-epoch dependence," Journal of Econometrics, Elsevier, vol. 167(1), pages 224-239.
    16. Nicolas DEBARSY & Cem ERTUR, 2016. "Interaction matrix selection in spatial econometrics with an application to growth theory," LEO Working Papers / DR LEO 2172, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    17. Nicolas Debarsy & Cem Ertur, 2016. "Interaction matrix selection in spatial econometrics with an application to growth theory," Working Papers halshs-01278545, HAL.
    18. Ye Yang & Osman Dogan & Suleyman Taspinar & Fei Jin, 2023. "A Review of Cross-Sectional Matrix Exponential Spatial Models," Papers 2311.14813, arXiv.org.
    19. Solmaria Halleck Vega & J. Paul Elhorst, 2015. "The Slx Model," Journal of Regional Science, Wiley Blackwell, vol. 55(3), pages 339-363, June.
    20. Marcos Herrera & Jesus Mur & Manuel Ruiz-Marin, 2017. "A Comparison Study on Criteria to Select the Most Adequate Weighting Matrix," Working Papers 18, Instituto de Estudios Laborales y del Desarrollo Económico (IELDE) - Universidad Nacional de Salta - Facultad de Ciencias Económicas, Jurídicas y Sociales.
    21. Masayoshi Hayashi & Wataru Yamamoto, 2017. "Information sharing, neighborhood demarcation, and yardstick competition: an empirical analysis of intergovernmental expenditure interaction in Japan," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(1), pages 134-163, February.

    More about this item

    Keywords

    Non-nested test; spatial correlation; pseudo maximum likelihood estimation;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:61433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.