IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v70y2008i5p1029-1047.html
   My bibliography  Save this article

Non‐parametric heteroscedastic transformation regression models for skewed data with an application to health care costs

Author

Listed:
  • Xiao‐Hua Zhou
  • Huazhen Lin
  • Eric Johnson

Abstract

Summary. We develop a new non‐parametric heteroscedastic transformation regression model for predicting the expected value of the outcome of a patient with given patient's covariates when the distribution of the outcome is highly skewed with a heteroscedastic variance. In our model, we allow both the transformation function and the error distribution function to be unknown. We show that under some regularity conditions the estimators for regression parameters, the expected value of the original outcome and the transformation function converge to their true values at the rate n−1/2. In our simulation studies, we demonstrate that our proposed non‐parametric method is robust with little loss of efficiency. Finally, we apply our model to a study on health care costs.

Suggested Citation

  • Xiao‐Hua Zhou & Huazhen Lin & Eric Johnson, 2008. "Non‐parametric heteroscedastic transformation regression models for skewed data with an application to health care costs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 1029-1047, November.
  • Handle: RePEc:bla:jorssb:v:70:y:2008:i:5:p:1029-1047
    DOI: 10.1111/j.1467-9868.2008.00669.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2008.00669.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2008.00669.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gorgens, Tue & Horowitz, Joel L., 1999. "Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 90(2), pages 155-191, June.
    2. Mullahy, John, 1998. "Much ado about two: reconsidering retransformation and the two-part model in health econometrics," Journal of Health Economics, Elsevier, vol. 17(3), pages 247-281, June.
    3. John Mullahy, 1998. "Much Ado About Two: Reconsidering Retransformation and the Two-Part Model in Health Economics," NBER Technical Working Papers 0228, National Bureau of Economic Research, Inc.
    4. Maity, Arnab & Ma, Yanyuan & Carroll, Raymond J., 2007. "Efficient Estimation of Population-Level Summaries in General Semiparametric Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 123-139, March.
    5. Manning, Willard G. & Basu, Anirban & Mullahy, John, 2005. "Generalized modeling approaches to risk adjustment of skewed outcomes data," Journal of Health Economics, Elsevier, vol. 24(3), pages 465-488, May.
    6. Buntin, Melinda Beeuwkes & Zaslavsky, Alan M., 2004. "Too much ado about two-part models and transformation?: Comparing methods of modeling Medicare expenditures," Journal of Health Economics, Elsevier, vol. 23(3), pages 525-542, May.
    7. Horowitz, Joel L, 1996. "Semiparametric Estimation of a Regression Model with an Unknown Transformation of the Dependent Variable," Econometrica, Econometric Society, vol. 64(1), pages 103-137, January.
    8. Manning, Willard G., 1998. "The logged dependent variable, heteroscedasticity, and the retransformation problem," Journal of Health Economics, Elsevier, vol. 17(3), pages 283-295, June.
    9. Han, Aaron K., 1987. "Non-parametric analysis of a generalized regression model : The maximum rank correlation estimator," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 303-316, July.
    10. Xiangrong Yin & R. Dennis Cook, 2005. "Direction estimation in single-index regressions," Biometrika, Biometrika Trust, vol. 92(2), pages 371-384, June.
    11. Blough, David K. & Madden, Carolyn W. & Hornbrook, Mark C., 1999. "Modeling risk using generalized linear models," Journal of Health Economics, Elsevier, vol. 18(2), pages 153-171, April.
    12. Arlene Ash & Randall P. Ellis & Gregory Pope & John Ayanian & David Bates & Helen Burstin & Lisa Iezzoni & Elizabeth McKay & Wei Yu, 2000. "Using Diagnoses to Describe Populations and Predict Costs," Papers 0099, Boston University - Industry Studies Programme.
    13. Guido W. Imbens & Donald B. Rubin, 1997. "Estimating Outcome Distributions for Compliers in Instrumental Variables Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 555-574.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Songnian & Zhang, Hanghui, 2020. "n-prediction of generalized heteroscedastic transformation regression models," Journal of Econometrics, Elsevier, vol. 215(2), pages 305-340.
    2. Liu, Lei & Strawderman, Robert L. & Cowen, Mark E. & Shih, Ya-Chen T., 2010. "A flexible two-part random effects model for correlated medical costs," Journal of Health Economics, Elsevier, vol. 29(1), pages 110-123, January.
    3. Qingzhi Zhong & Huazhen Lin & Yi Li, 2021. "Cluster non‐Gaussian functional data," Biometrics, The International Biometric Society, vol. 77(3), pages 852-865, September.
    4. Yao Luo & Isabelle Perrigne & Quang Vuong, 2018. "Structural Analysis of Nonlinear Pricing," Journal of Political Economy, University of Chicago Press, vol. 126(6), pages 2523-2568.
    5. Neumeyer, Natalie & Noh, Hohsuk & Van Keilegom, Ingrid, 2014. "Heteroscedastic semiparametric transformation models: estimation and testing for validity," LIDAM Discussion Papers ISBA 2014047, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Jiang, Jiakun & Lin, Huazhen & Zhong, Qingzhi & Li, Yi, 2022. "Analysis of multivariate non-gaussian functional data: A semiparametric latent process approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jones, A.M, 2010. "Models For Health Care," Health, Econometrics and Data Group (HEDG) Working Papers 10/01, HEDG, c/o Department of Economics, University of York.
    2. Keane, Michael & Stavrunova, Olena, 2016. "Adverse selection, moral hazard and the demand for Medigap insurance," Journal of Econometrics, Elsevier, vol. 190(1), pages 62-78.
    3. Steven C. Hill & G. Edward Miller, 2010. "Health expenditure estimation and functional form: applications of the generalized gamma and extended estimating equations models," Health Economics, John Wiley & Sons, Ltd., vol. 19(5), pages 608-627, May.
    4. Brilleman, Samuel L. & Gravelle, Hugh & Hollinghurst, Sandra & Purdy, Sarah & Salisbury, Chris & Windmeijer, Frank, 2014. "Keep it simple? Predicting primary health care costs with clinical morbidity measures," Journal of Health Economics, Elsevier, vol. 35(C), pages 109-122.
    5. Samuel L Brilleman & Hugh Gravelle & Sandra Hollinghurst & Sarah Purdy & Chris Salisbury & Frank Windmeijer, 2011. "Keep it Simple? Predicting Primary Health Care Costs with Measures of Morbidity and Multimorbidity," Working Papers 072cherp, Centre for Health Economics, University of York.
    6. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.
    7. Keane, Michael & Stavrunova, Olena, 2016. "Adverse selection, moral hazard and the demand for Medigap insurance," Journal of Econometrics, Elsevier, vol. 190(1), pages 62-78.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:70:y:2008:i:5:p:1029-1047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.