IDEAS home Printed from https://ideas.repec.org/a/eee/jhecon/v29y2010i1p110-123.html
   My bibliography  Save this article

A flexible two-part random effects model for correlated medical costs

Author

Listed:
  • Liu, Lei
  • Strawderman, Robert L.
  • Cowen, Mark E.
  • Shih, Ya-Chen T.

Abstract

In this paper, we propose a flexible "two-part" random effects model ([Olsen and Schafer, 2001] and [Tooze et al., 2002]) for correlated medical cost data. Typically, medical cost data are right-skewed, involve a substantial proportion of zero values, and may exhibit heteroscedasticity. In many cases, such data are also obtained in hierarchical form, e.g., on patients served by the same physician. The proposed model specification therefore consists of two generalized linear mixed models (GLMM), linked together by correlated random effects. Respectively, and conditionally on the random effects and covariates, we model the odds of cost being positive (Part I) using a GLMM with a logistic link and the mean cost (Part II) given that costs were actually incurred using a generalized gamma regression model with random effects and a scale parameter that is allowed to depend on covariates (cf., Manning et al., 2005). The class of generalized gamma distributions is very flexible and includes the lognormal, gamma, inverse gamma and Weibull distributions as special cases. We demonstrate how to carry out estimation using the Gaussian quadrature techniques conveniently implemented in SAS Proc NLMIXED. The proposed model is used to analyze pharmacy cost data on 56,245 adult patients clustered within 239 physicians in a mid-western U.S. managed care organization.

Suggested Citation

  • Liu, Lei & Strawderman, Robert L. & Cowen, Mark E. & Shih, Ya-Chen T., 2010. "A flexible two-part random effects model for correlated medical costs," Journal of Health Economics, Elsevier, vol. 29(1), pages 110-123, January.
  • Handle: RePEc:eee:jhecon:v:29:y:2010:i:1:p:110-123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6296(09)00138-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul S. Albert, 2005. "Letter to the Editor," Biometrics, The International Biometric Society, vol. 61(3), pages 879-880, September.
    2. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    3. Manning, Willard G., 1998. "The logged dependent variable, heteroscedasticity, and the retransformation problem," Journal of Health Economics, Elsevier, vol. 17(3), pages 283-295, June.
    4. Harvey Goldstein & Jon Rasbash, 1996. "Improved Approximations for Multilevel Models with Binary Responses," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 159(3), pages 505-513, May.
    5. Manning, W. G. & Duan, N. & Rogers, W. H., 1987. "Monte Carlo evidence on the choice between sample selection and two-part models," Journal of Econometrics, Elsevier, vol. 35(1), pages 59-82, May.
    6. Mullahy, John, 1998. "Much ado about two: reconsidering retransformation and the two-part model in health econometrics," Journal of Health Economics, Elsevier, vol. 17(3), pages 247-281, June.
    7. Nicola J. Cooper & Paul C. Lambert & Keith R. Abrams & Alexander J. Sutton, 2007. "Predicting costs over time using Bayesian Markov chain Monte Carlo methods: an application to early inflammatory polyarthritis," Health Economics, John Wiley & Sons, Ltd., vol. 16(1), pages 37-56, January.
    8. John Mullahy, 1998. "Much Ado About Two: Reconsidering Retransformation and the Two-Part Model in Health Economics," NBER Technical Working Papers 0228, National Bureau of Economic Research, Inc.
    9. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    10. Manning, Willard G. & Basu, Anirban & Mullahy, John, 2005. "Generalized modeling approaches to risk adjustment of skewed outcomes data," Journal of Health Economics, Elsevier, vol. 24(3), pages 465-488, May.
    11. Xiao‐Hua Zhou & Huazhen Lin & Eric Johnson, 2008. "Non‐parametric heteroscedastic transformation regression models for skewed data with an application to health care costs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 1029-1047, November.
    12. Cragg, John G, 1971. "Some Statistical Models for Limited Dependent Variables with Application to the Demand for Durable Goods," Econometrica, Econometric Society, vol. 39(5), pages 829-844, September.
    13. repec:dau:papers:123456789/1908 is not listed on IDEAS
    14. Leung, Siu Fai & Yu, Shihti, 1996. "On the choice between sample selection and two-part models," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 197-229.
    15. Zhang, Min & Strawderman, Robert L. & Cowen, Mark E. & Wells, Martin T., 2006. "Bayesian Inference for a Two-Part Hierarchical Model: An Application to Profiling Providers in Managed Health Care," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 934-945, September.
    16. Duan, Naihua, et al, 1983. "A Comparison of Alternative Models for the Demand for Medical Care," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 115-126, April.
    17. Xiao‐Hua Zhou & Kevin T. Stroupe & William M. Tierney, 2001. "Regression analysis of health care charges with heteroscedasticity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(3), pages 303-312.
    18. Duan, Naihua, et al, 1984. "Choosing between the Sample-Selection Model and the Multi-part Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(3), pages 283-289, July.
    19. Kohei Enami & John Mullahy, 2008. "Tobit at Fifty: A Brief History of Tobin's Remarkable Estimator, of Related Empirical Methods, and of Limited Dependent Variable Econometrics in Health Economics," NBER Working Papers 14512, National Bureau of Economic Research, Inc.
    20. Shou-En Lu & Yong Lin & Wei-Chung Joe Shih, 2004. "Analyzing Excessive No Changes in Clinical Trials with Clustered Data," Biometrics, The International Biometric Society, vol. 60(1), pages 257-267, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilson-Barthes, M. & Steingrimsson, J. & Lee, Y. & Tran, D.N. & Wachira, J. & Kafu, C. & Pastakia, S.D. & Vedanthan, R. & Said, J.A. & Genberg, B.L. & Galárraga, O., 2024. "Economic outcomes among microfinance group members receiving community-based chronic disease care: Cluster randomized trial evidence from Kenya," Social Science & Medicine, Elsevier, vol. 351(C).
    2. Shi, Peng & Feng, Xiaoping & Ivantsova, Anastasia, 2015. "Dependent frequency–severity modeling of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 417-428.
    3. Liu, Yue & Liu, Lei & Zhou, Jianhui, 2015. "Joint latent class model of survival and longitudinal data: An application to CPCRA study," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 40-50.
    4. Qianhong Lu & Xiaoqing Gan & Zhensheng Chen, 2023. "The Impact of Medical Insurance Payment Policy Reform on Medical Cost and Medical Burden in China," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    5. Arnab Mukherji & Satrajit Roychowdhury & Pulak Ghosh & Sarah Brown, 2012. "Estimating Healthcare Demand for an Aging Population: A Flexible and Robust Bayesian Joint Model," Working Papers 2012027, The University of Sheffield, Department of Economics.
    6. Y. T. Hwang & C. H. Huang & W. L. Yeh & Y. D. Shen, 2017. "The weighted general linear model for longitudinal medical cost data – an application in colorectal cancer," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(2), pages 288-307, January.
    7. Torrini, Irene & Grassetti, Luca & Rizzi, Laura, 2023. "Under-spending, over-spending or substitution among services? Spatial patterns of unexplained shares of health care expenditures," Health Policy, Elsevier, vol. 137(C).
    8. Wouterse, Bram & Huisman, Martijn & Meijboom, Bert R. & Deeg, Dorly J.H. & Polder, Johan J., 2013. "Modeling the relationship between health and health care expenditures using a latent Markov model," Journal of Health Economics, Elsevier, vol. 32(2), pages 423-439.
    9. Beom Seuk Hwang & Zhen Chen & Germaine M. Buck Louis & Paul S. Albert, 2019. "A Bayesian multi‐dimensional couple‐based latent risk model with an application to infertility," Biometrics, The International Biometric Society, vol. 75(1), pages 315-325, March.
    10. Mohadeseh Shojaei Shahrokhabadi & (Din) Ding-Geng Chen & Sayed Jamal Mirkamali & Anoshirvan Kazemnejad & Farid Zayeri, 2021. "Marginalized Two-Part Joint Modeling of Longitudinal Semi-Continuous Responses and Survival Data: With Application to Medical Costs," Mathematics, MDPI, vol. 9(20), pages 1-20, October.
    11. Matthew L. Maciejewski & Chuan‐Fen Liu & Andrew L. Kavee & Maren K. Olsen, 2012. "How Price Responsive Is The Demand For Specialty Care?," Health Economics, John Wiley & Sons, Ltd., vol. 21(8), pages 902-912, August.
    12. Haitao Chai & Hongmei Jiang & Lu Lin & Lei Liu, 2018. "A marginalized two-part Beta regression model for microbiome compositional data," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-16, July.
    13. Bram Wouterse & Bert R. Meijboom & Johan J. Polder, 2011. "The relationship between baseline health and longitudinal costs of hospital use," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 985-1008, August.
    14. Shelley A. Blozis & Ricardo Villarreal & Sweta Thota & Nicholas Imparato, 2019. "Using a two-part mixed-effects model for understanding daily, individual-level media behavior," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(4), pages 234-250, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.
    2. Kohei Enami & John Mullahy, 2008. "Tobit at Fifty: A Brief History of Tobin's Remarkable Estimator, of Related Empirical Methods, and of Limited Dependent Variable Econometrics in Health Economics," NBER Working Papers 14512, National Bureau of Economic Research, Inc.
    3. Jeonghoon Ahn, 2004. "Panel Data Sample Selection Model: an Application to Employee Choice of Health Plan Type and Medical Cost Estimation," Econometric Society 2004 Far Eastern Meetings 560, Econometric Society.
    4. Liu, Lei & Conaway, Mark R. & Knaus, William A. & Bergin, James D., 2008. "A random effects four-part model, with application to correlated medical costs," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4458-4473, May.
    5. Patrick Puhani, 2000. "The Heckman Correction for Sample Selection and Its Critique," Journal of Economic Surveys, Wiley Blackwell, vol. 14(1), pages 53-68, February.
    6. Leung, Siu Fai & Yu, Shihti, 1996. "On the choice between sample selection and two-part models," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 197-229.
    7. Silva João M. C. Santos & Tenreyro Silvana & Windmeijer Frank, 2015. "Testing Competing Models for Non-negative Data with Many Zeros," Journal of Econometric Methods, De Gruyter, vol. 4(1), pages 29-46, January.
    8. Toni Mora & Joan Gil & Antoni Sicras-Mainar, 2015. "The influence of obesity and overweight on medical costs: a panel data perspective," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 16(2), pages 161-173, March.
    9. Madden, David, 2008. "Sample selection versus two-part models revisited: The case of female smoking and drinking," Journal of Health Economics, Elsevier, vol. 27(2), pages 300-307, March.
    10. Kohei Enami & John Mullahy, 2009. "Tobit at fifty: a brief history of Tobin's remarkable estimator, of related empirical methods, and of limited dependent variable econometrics in health economics," Health Economics, John Wiley & Sons, Ltd., vol. 18(6), pages 619-628, June.
    11. Charlotte Geay & Grégoire de Lagasnerie & Makram Larguem, 2015. "Intégrer les dépenses de santé dans un modèle de microsimulation dynamique : le cas des dépenses de soins de ville," Économie et Statistique, Programme National Persée, vol. 481(1), pages 211-234.
    12. Brigitte Dormont & Hélène Huber, 2006. "Ageing and changes in medical practices : reassessing theinfluence of demography," Post-Print halshs-00274723, HAL.
    13. Valerie Albouy & Laurent Davezies & Thierry Debrand, 2009. "Dynamic Estimation of Health Expenditure: A new approach for simulating individual expenditure," Working Papers DT20, IRDES institut for research and information in health economics, revised Jan 2009.
    14. Jones, A.M, 2010. "Models For Health Care," Health, Econometrics and Data Group (HEDG) Working Papers 10/01, HEDG, c/o Department of Economics, University of York.
    15. Toni Mora & Joan Gil & Antoni Sicras-Mainar, 2012. "The Influence of BMI, Obesity and Overweight on Medical Costs: A Panel Data Approach," Working Papers 2012-08, FEDEA.
    16. Jay Dev Dubey, 2021. "Measuring Income Elasticity of Healthcare-Seeking Behavior in India: A Conditional Quantile Regression Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(4), pages 767-793, December.
    17. C. GEAY & M. KOUBI & G. de LAGASNERIE, 2015. "Evolution of outpatient healthcare expenditure, a dynamic micro-simulation using the Destinie model," Documents de Travail de l'Insee - INSEE Working Papers g2015-15, Institut National de la Statistique et des Etudes Economiques.
    18. Goic, Marcel & Rojas, Andrea & Saavedra, Ignacio, 2021. "The Effectiveness of Triggered Email Marketing in Addressing Browse Abandonments," Journal of Interactive Marketing, Elsevier, vol. 55(C), pages 118-145.
    19. Manning, Willard G. & Mullahy, John, 2001. "Estimating log models: to transform or not to transform?," Journal of Health Economics, Elsevier, vol. 20(4), pages 461-494, July.
    20. Galina Besstremyannaya, 2012. "Estimating income equity in social health insurance system," Working Papers w0172, New Economic School (NES).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jhecon:v:29:y:2010:i:1:p:110-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505560 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.