Continuously dynamic additive models for functional data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2016.05.003
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Müller, Hans-Georg & Sen, Rituparna & Stadtmüller, Ulrich, 2011. "Functional data analysis for volatility," Journal of Econometrics, Elsevier, vol. 165(2), pages 233-245.
- Muller, Hans-Georg & Stadtmuller, Ulrich & Yao, Fang, 2006. "Functional Variance Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1007-1018, September.
- Raymond J. Carroll & Arnab Maity & Enno Mammen & Kyusang Yu, 2009. "Nonparametric additive regression for repeatedly measured data," Biometrika, Biometrika Trust, vol. 96(2), pages 383-398.
- Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
- Fang Yao & Thomas C. M. Lee, 2006. "Penalized spline models for functional principal component analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 3-25, February.
- Pradeep Ravikumar & John Lafferty & Han Liu & Larry Wasserman, 2009. "Sparse additive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 1009-1030, November.
- Yehua Li & Naisyin Wang & Raymond J. Carroll, 2013. "Selecting the Number of Principal Components in Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1284-1294, December.
- Hans-Georg Müller & Yichao Wu & Fang Yao, 2013. "Continuously additive models for nonlinear functional regression," Biometrika, Biometrika Trust, vol. 100(3), pages 607-622.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lee, Kyeongeun & Lee, Young K. & Park, Byeong U. & Yang, Seong J., 2018. "Time-dynamic varying coefficient models for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 50-65.
- Thomas Schaubroeck & Simon Schaubroeck & Reinout Heijungs & Alessandra Zamagni & Miguel Brandão & Enrico Benetto, 2021. "Attributional & Consequential Life Cycle Assessment: Definitions, Conceptual Characteristics and Modelling Restrictions," Sustainability, MDPI, vol. 13(13), pages 1-47, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
- Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Xiuli Du & Xiaohu Jiang & Jinguan Lin, 2023. "Multinomial Logistic Factor Regression for Multi-source Functional Block-wise Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 975-1001, September.
- Jan G. De Gooijer & Cees G. H. Diks & Łukasz T. Gątarek, 2012.
"Information Flows Around the Globe: Predicting Opening Gaps from Overnight Foreign Stock Price Patterns,"
Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(1), pages 23-44, March.
- De Gooijer, J. & Diks, C.G.H. & Gatarek, L., 2009. "Information Flows Around the Globe: Predicting Opening Gaps from Overnight Foreign Stock Price Patterns," CeNDEF Working Papers 09-13, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
- Jan G. de Gooijer & Cees G.H. Diks & Lukasz T. Gatarek, 2009. "Information Flows around the Globe: Predicting Opening Gaps from Overnight Foreign Stock Price Patterns," Tinbergen Institute Discussion Papers 09-107/4, Tinbergen Institute.
- Nagy, Stanislav & Ferraty, Frédéric, 2019. "Data depth for measurable noisy random functions," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 95-114.
- Tomáš Rubín & Victor M. Panaretos, 2020. "Functional lagged regression with sparse noisy observations," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 858-882, November.
- Tingting Wang & Linjie Qin & Chao Dai & Zhen Wang & Chenqi Gong, 2023. "Heterogeneous Learning of Functional Clustering Regression and Application to Chinese Air Pollution Data," IJERPH, MDPI, vol. 20(5), pages 1-21, February.
- Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
- Chang, Jinyuan & Chen, Cheng & Qiao, Xinghao & Yao, Qiwei, 2023. "An autocovariance-based learning framework for high-dimensional functional time series," LSE Research Online Documents on Economics 117910, London School of Economics and Political Science, LSE Library.
- Yuan Gao & Han Lin Shang, 2017. "Multivariate Functional Time Series Forecasting: Application to Age-Specific Mortality Rates," Risks, MDPI, vol. 5(2), pages 1-18, March.
- Qian Huang & Jinhong You & Liwen Zhang, 2022. "Efficient inference of longitudinal/functional data models with time‐varying additive structure," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 744-771, June.
- Xinyue Chang & Yehua Li & Yi Li, 2023. "Asynchronous and error‐prone longitudinal data analysis via functional calibration," Biometrics, The International Biometric Society, vol. 79(4), pages 3374-3387, December.
- Kuang‐Yao Lee & Lexin Li, 2022. "Functional structural equation model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 600-629, April.
- Kehui Chen & Xiaoke Zhang & Alexander Petersen & Hans-Georg Müller, 2017. "Quantifying Infinite-Dimensional Data: Functional Data Analysis in Action," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 582-604, December.
- Saart, Patrick W. & Xia, Yingcun, 2022. "Functional time series approach to analyzing asset returns co-movements," Journal of Econometrics, Elsevier, vol. 229(1), pages 127-151.
- Wong, Raymond K.W. & Zhang, Xiaoke, 2019. "Nonparametric operator-regularized covariance function estimation for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 131-144.
- Yueying Wang & Guannan Wang & Li Wang & R. Todd Ogden, 2020. "Simultaneous confidence corridors for mean functions in functional data analysis of imaging data," Biometrics, The International Biometric Society, vol. 76(2), pages 427-437, June.
- Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
- Zhang, Xin & Wang, Chong & Wu, Yichao, 2018. "Functional envelope for model-free sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 37-50.
- Li, Meng & Wang, Kehui & Maity, Arnab & Staicu, Ana-Maria, 2022. "Inference in functional linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
More about this item
Keywords
Continuously dynamic additive models; Penalized least squares; Tensor spline; Stochastic process; Volatility prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:150:y:2016:i:c:p:1-13. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.