IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v64y2002i4p805-826.html
   My bibliography  Save this article

Modelling spatially correlated data via mixtures: a Bayesian approach

Author

Listed:
  • Carmen Fernández
  • Peter J. Green

Abstract

Summary. The paper develops mixture models for spatially indexed data. We confine attention to the case of finite, typically irregular, patterns of points or regions with prescribed spatial relationships, and to problems where it is only the weights in the mixture that vary from one location to another. Our specific focus is on Poisson‐distributed data, and applications in disease mapping. We work in a Bayesian framework, with the Poisson parameters drawn from gamma priors, and an unknown number of components. We propose two alternative models for spatially dependent weights, based on transformations of autoregressive Gaussian processes: in one (the logistic normal model), the mixture component labels are exchangeable; in the other (the grouped continuous model), they are ordered. Reversible jump Markov chain Monte Carlo algorithms for posterior inference are developed. Finally, the performances of both of these formulations are examined on synthetic data and real data on mortality from a rare disease.

Suggested Citation

  • Carmen Fernández & Peter J. Green, 2002. "Modelling spatially correlated data via mixtures: a Bayesian approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 805-826, October.
  • Handle: RePEc:bla:jorssb:v:64:y:2002:i:4:p:805-826
    DOI: 10.1111/1467-9868.00362
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00362
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Green P.J. & Richardson S., 2002. "Hidden Markov Models and Disease Mapping," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1055-1070, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:dau:papers:123456789/9572 is not listed on IDEAS
    2. Håvard Rue & Ingelin Steinsland & Sveinung Erland, 2004. "Approximating hidden Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 877-892, November.
    3. Congdon, Peter, 2007. "Mixtures of spatial and unstructured effects for spatially discontinuous health outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3197-3212, March.
    4. Deb, Soudeep & Karmakar, Sayar, 2023. "A novel spatio-temporal clustering algorithm with applications on COVID-19 data from the United States," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    5. Vidal Rodeiro, Carmen L. & Lawson, Andrew B., 2005. "An evaluation of the edge effects in disease map modelling," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 45-62, April.
    6. Lei Xu & Timothy D. Johnson & Thomas E. Nichols & Derek E. Nee, 2009. "Modeling Inter-Subject Variability in fMRI Activation Location: A Bayesian Hierarchical Spatial Model," Biometrics, The International Biometric Society, vol. 65(4), pages 1041-1051, December.
    7. Vinicius Mayrink & Dani Gamerman, 2009. "On computational aspects of Bayesian spatial models: influence of the neighboring structure in the efficiency of MCMC algorithms," Computational Statistics, Springer, vol. 24(4), pages 641-669, December.
    8. Luc Anselin & Pedro Amaral, 2024. "Endogenous spatial regimes," Journal of Geographical Systems, Springer, vol. 26(2), pages 209-234, April.
    9. Jan Povala & Seppo Virtanen & Mark Girolami, 2020. "Burglary in London: insights from statistical heterogeneous spatial point processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1067-1090, November.
    10. Bolin, David & Wallin, Jonas & Lindgren, Finn, 2019. "Latent Gaussian random field mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 80-93.
    11. M. Rufo & J. Martín & C. Pérez, 2006. "Bayesian analysis of finite mixture models of distributions from exponential families," Computational Statistics, Springer, vol. 21(3), pages 621-637, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spezia, L. & Cooksley, S.L. & Brewer, M.J. & Donnelly, D. & Tree, A., 2014. "Modelling species abundance in a river by Negative Binomial hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 599-614.
    2. Dolores Catelan & Annibale Biggeri & Corrado Lagazio, 2009. "On the clustering term in ecological analysis: how do different prior specifications affect results?," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 49-61, March.
    3. Luigi Spezia, 2019. "Modelling covariance matrices by the trigonometric separation strategy with application to hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 399-422, June.
    4. Xifen Huang & Chaosong Xiong & Jinfeng Xu & Jianhua Shi & Jinhong Huang, 2022. "Mixture Modeling of Time-to-Event Data in the Proportional Odds Model," Mathematics, MDPI, vol. 10(18), pages 1-11, September.
    5. Luis Nieto-Barajas & Eduardo Gutiérrez-Peña, 2022. "General dependence structures for some models based on exponential families with quadratic variance functions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 699-716, September.
    6. Jan Povala & Seppo Virtanen & Mark Girolami, 2020. "Burglary in London: insights from statistical heterogeneous spatial point processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1067-1090, November.
    7. Francesco Bartolucci & Alessio Farcomeni, 2022. "A hidden Markov space–time model for mapping the dynamics of global access to food," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 246-266, January.
    8. Geweke, John, 2007. "Interpretation and inference in mixture models: Simple MCMC works," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3529-3550, April.
    9. Sijia Xiang & Weixin Yao, 2020. "Semiparametric mixtures of regressions with single-index for model based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 261-292, June.
    10. Ugarte, M.D. & Goicoa, T. & Militino, A.F., 2009. "Empirical Bayes and Fully Bayes procedures to detect high-risk areas in disease mapping," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2938-2949, June.
    11. Vidal Rodeiro, Carmen L. & Lawson, Andrew B., 2005. "An evaluation of the edge effects in disease map modelling," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 45-62, April.
    12. N. Friel & A. N. Pettitt, 2008. "Marginal likelihood estimation via power posteriors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 589-607, July.
    13. Yonekura, Shouto & Beskos, Alexandros & Singh, Sumeetpal S., 2021. "Asymptotic analysis of model selection criteria for general hidden Markov models," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 164-191.
    14. Ian L. Dryden & Mark R. Scarr & Charles C. Taylor, 2003. "Bayesian texture segmentation of weed and crop images using reversible jump Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 31-50, January.
    15. Zhang, Tonglin & Lin, Ge, 2016. "On Moran’s I coefficient under heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 83-94.
    16. Johnson, Timothy D. & Piert, Morand, 2009. "A Bayesian analysis of dual autoradiographic images," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4570-4583, October.
    17. Wanchuang Zhu & Yanan Fan, 2023. "A synthetic likelihood approach for intractable markov random fields," Computational Statistics, Springer, vol. 38(2), pages 749-777, June.
    18. Zhang, Tonglin & Lin, Ge, 2013. "On the limiting distribution of the spatial scan statistic," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 215-225.
    19. R. Reeves, 2004. "Efficient recursions for general factorisable models," Biometrika, Biometrika Trust, vol. 91(3), pages 751-757, September.
    20. Zhang, Tonglin & Lin, Ge, 2014. "Family of power divergence spatial scan statistics," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 162-178.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:64:y:2002:i:4:p:805-826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.