IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v132y2021icp164-191.html
   My bibliography  Save this article

Asymptotic analysis of model selection criteria for general hidden Markov models

Author

Listed:
  • Yonekura, Shouto
  • Beskos, Alexandros
  • Singh, Sumeetpal S.

Abstract

The paper obtains analytical results for the asymptotic properties of Model Selection Criteria – widely used in practice – for a general family of hidden Markov models (HMMs), thereby substantially extending the related theory beyond typical ‘i.i.d.-like’ model structures and filling in an important gap in the relevant literature. In particular, we look at the Bayesian and Akaike Information Criteria (BIC and AIC) and the model evidence. In the setting of nested classes of models, we prove that BIC and the evidence are strongly consistent for HMMs (under regularity conditions), whereas AIC is not weakly consistent. Numerical experiments support our theoretical results.

Suggested Citation

  • Yonekura, Shouto & Beskos, Alexandros & Singh, Sumeetpal S., 2021. "Asymptotic analysis of model selection criteria for general hidden Markov models," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 164-191.
  • Handle: RePEc:eee:spapps:v:132:y:2021:i:c:p:164-191
    DOI: 10.1016/j.spa.2020.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441492030404X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jie Ding & Vahid Tarokh & Yuhong Yang, 2018. "Model Selection Techniques -- An Overview," Papers 1810.09583, arXiv.org.
    2. Sin, Chor-Yiu & White, Halbert, 1996. "Information criteria for selecting possibly misspecified parametric models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 207-225.
    3. George Poyiadjis & Arnaud Doucet & Sumeetpal S. Singh, 2011. "Particle approximations of the score and observed information matrix in state space models with application to parameter estimation," Biometrika, Biometrika Trust, vol. 98(1), pages 65-80.
    4. Yuhong Yang, 2005. "Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation," Biometrika, Biometrika Trust, vol. 92(4), pages 937-950, December.
    5. R. Ibragimov & Sh. Sharakhmetov, 1999. "Analogues of Khintchine, Marcinkiewicz–Zygmund and Rosenthal Inequalities for Symmetric Statistics," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(4), pages 621-633, December.
    6. Douc, Randal & Olsson, Jimmy & Roueff, François, 2020. "Posterior consistency for partially observed Markov models," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 733-759.
    7. Nishii, R., 1988. "Maximum likelihood principle and model selection when the true model is unspecified," Journal of Multivariate Analysis, Elsevier, vol. 27(2), pages 392-403, November.
    8. Cristiano Varin & Paolo Vidoni, 2005. "A note on composite likelihood inference and model selection," Biometrika, Biometrika Trust, vol. 92(3), pages 519-528, September.
    9. Michael Pitt & Sheheryar Malik & Arnaud Doucet, 2014. "Simulated likelihood inference for stochastic volatility models using continuous particle filtering," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 527-552, June.
    10. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, October.
    11. Green P.J. & Richardson S., 2002. "Hidden Markov Models and Disease Mapping," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1055-1070, December.
    12. Demian Pouzo & Zacharias Psaradakis & Martin Sola, 2016. "Maximum Likelihood Estimation in Possibly Misspeci ed Dynamic Models with Time-Inhomogeneous Markov Regimes," Department of Economics Working Papers 2016_04, Universidad Torcuato Di Tella.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Yu & HaiYing Wang, 2022. "Subdata selection algorithm for linear model discrimination," Statistical Papers, Springer, vol. 63(6), pages 1883-1906, December.
    2. Susanne M. Schennach & Daniel Wilhelm, 2017. "A Simple Parametric Model Selection Test," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1663-1674, October.
    3. Tamara Burdisso & Eduardo Ariel Corso, 2011. "Incertidumbre y dolarización de cartera: el caso argentino en el último medio siglo," Monetaria, CEMLA, vol. 0(4), pages 461-515, octubre-d.
    4. Driffill, John & Sola, Martin & Kenc, Turalay & Spagnolo, Fabio, 2004. "On Model Selection and Markov Switching: A Empirical Examination of Term Structure Models with Regime Shifts," CEPR Discussion Papers 4165, C.E.P.R. Discussion Papers.
    5. Carlos Medel, 2012. "¿Akaike o Schwarz? ¿Cuál elegir para Predecir el PIB Chileno?," Working Papers Central Bank of Chile 658, Central Bank of Chile.
    6. Andrews, Donald W. K. & Lu, Biao, 2001. "Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models," Journal of Econometrics, Elsevier, vol. 101(1), pages 123-164, March.
    7. Arie Preminger & Shinichi Sakata, 2007. "A model selection method for S-estimation," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 294-319, July.
    8. Lee, Yoonseok & Phillips, Peter C.B., 2015. "Model selection in the presence of incidental parameters," Journal of Econometrics, Elsevier, vol. 188(2), pages 474-489.
    9. Carlos A. Medel Vera, 2011. "¿Akaike o Schwarz? ¿Cuál utilizar para predecir el PIB chileno?," Monetaria, CEMLA, vol. 0(4), pages 591-615, octubre-d.
    10. Driffill John & Kenc Turalay & Sola Martin & Spagnolo Fabio, 2009. "The Effects of Different Parameterizations of Markov-Switching in a CIR Model of Bond Pricing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(1), pages 1-24, March.
    11. Erhard Reschenhofer & David Preinerstorfer & Lukas Steinberger, 2013. "Non-monotonic penalizing for the number of structural breaks," Computational Statistics, Springer, vol. 28(6), pages 2585-2598, December.
    12. Emil Aas Stoltenberg & Nils Lid Hjort, 2021. "Models and inference for on–off data via clipped Ornstein–Uhlenbeck processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 908-929, September.
    13. Candida Geerdens & Gerda Claeskens & Paul Janssen, 2016. "Copula based flexible modeling of associations between clustered event times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 363-381, July.
    14. HAEDO, Christian & MOUCHART , Michel & ,, 2013. "Specialized agglomerations with areal data: model and detection," LIDAM Discussion Papers CORE 2013060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Su, Jiun-Hua, 2021. "Model selection in utility-maximizing binary prediction," Journal of Econometrics, Elsevier, vol. 223(1), pages 96-124.
    16. Kira Alhorn & Holger Dette & Kirsten Schorning, 2021. "Optimal Designs for Model Averaging in non-nested Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 745-778, August.
    17. Wei, Yuting & Wang, Qihua & Duan, Xiaogang & Qin, Jing, 2021. "Bias-corrected Kullback–Leibler distance criterion based model selection with covariables missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    18. Donald W.K. Andrews & Biao Lu, 1999. "Consistent Model and Moment Selection Criteria for GMM Estimation with Applications to Dynamic Panel Data Models," Cowles Foundation Discussion Papers 1233, Cowles Foundation for Research in Economics, Yale University.
    19. Arie Preminger & David Wettstein, 2005. "Using the Penalized Likelihood Method for Model Selection with Nuisance Parameters Present only under the Alternative: An Application to Switching Regression Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(5), pages 715-741, September.
    20. Zacharias Psaradakis & Nicola Spagnolo, 2003. "On The Determination Of The Number Of Regimes In Markov‐Switching Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 237-252, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:132:y:2021:i:c:p:164-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.