IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v95y2016icp83-94.html
   My bibliography  Save this article

On Moran’s I coefficient under heterogeneity

Author

Listed:
  • Zhang, Tonglin
  • Lin, Ge

Abstract

Moran’s I is the most popular spatial test statistic, but its inability to incorporate heterogeneous populations has been long recognized. This article provides a limiting distribution of the Moran’s I coefficient which can be applied to heterogeneous populations. The method provides a unified framework of testing for spatial autocorrelation for both homogeneous and heterogeneous populations, thereby resolving a long standing issue for Moran’s I. For Poisson count data, a variance adjustment method is provided that solely depends on populations at risk. Simulation results are shown to be consistent with theoretical results. The application of Nebraska breast cancer data shows that the variance adjustment method is simple and effective in reducing type I error rates, which in turn will likely reduce potential misallocation of limited resources.

Suggested Citation

  • Zhang, Tonglin & Lin, Ge, 2016. "On Moran’s I coefficient under heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 83-94.
  • Handle: RePEc:eee:csdana:v:95:y:2016:i:c:p:83-94
    DOI: 10.1016/j.csda.2015.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315002376
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tonglin Zhang & Ge Lin, 2009. "Cluster Detection Based on Spatial Associations and Iterated Residuals in Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 65(2), pages 353-360, June.
    2. Mikosch, T., 1991. "Functional limit theorems for random quadratic forms," Stochastic Processes and their Applications, Elsevier, vol. 37(1), pages 81-98, February.
    3. Julian Besag & James Newell, 1991. "The Detection of Clusters in Rare Diseases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 154(1), pages 143-155, January.
    4. Michael L. Stein, 2005. "Space-Time Covariance Functions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 310-321, March.
    5. Denis Mollison & Valerie Isham & Bryan Grenfell, 1994. "Epidemics: Models and Data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 157(1), pages 115-129, January.
    6. Zhang, Tonglin & Lin, Ge, 2007. "A decomposition of Moran's I for clustering detection," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6123-6137, August.
    7. Kelsall J. & Eld J.W., 2002. "Modeling Spatial Variation in Disease Risk: A Geostatistical Approach," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 692-701, September.
    8. Michael F. Goodchild & Luc Anselin & Richard P. Appelbaum & Barbara Herr Harthorn, 2000. "Toward Spatially Integrated Social Science," International Regional Science Review, , vol. 23(2), pages 139-159, April.
    9. H. Kelejian, Harry & Prucha, Ingmar R., 2001. "On the asymptotic distribution of the Moran I test statistic with applications," Journal of Econometrics, Elsevier, vol. 104(2), pages 219-257, September.
    10. Green P.J. & Richardson S., 2002. "Hidden Markov Models and Disease Mapping," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1055-1070, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Bin & Lin, Boqiang, 2017. "Factors affecting CO2 emissions in China’s agriculture sector: Evidence from geographically weighted regression model," Energy Policy, Elsevier, vol. 104(C), pages 404-414.
    2. Zhang, Lingxian & Wang, Jieqiong & Wen, Haojie & Fu, Zetian & Li, Xinxing, 2016. "Operating performance, industry agglomeration and its spatial characteristics of Chinese photovoltaic industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 373-386.
    3. Xu, Bin & Lin, Boqiang, 2018. "Do we really understand the development of China's new energy industry?," Energy Economics, Elsevier, vol. 74(C), pages 733-745.
    4. Yongfeng Zhu & Zilong Wang & Shilei Qiu & Lingling Zhu, 2019. "Effects of Environmental Regulations on Technological Innovation Efficiency in China’s Industrial Enterprises: A Spatial Analysis," Sustainability, MDPI, vol. 11(7), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. HAEDO, Christian & MOUCHART , Michel & ,, 2013. "Specialized agglomerations with areal data: model and detection," LIDAM Discussion Papers CORE 2013060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Dolores Catelan & Annibale Biggeri & Corrado Lagazio, 2009. "On the clustering term in ecological analysis: how do different prior specifications affect results?," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 49-61, March.
    3. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    4. Kunihiko Takahashi & Hideyasu Shimadzu, 2018. "Multiple-cluster detection test for purely temporal disease clustering: Integration of scan statistics and generalized linear models," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-15, November.
    5. Yong Bao & Xiaotian Liu & Lihong Yang, 2020. "Indirect Inference Estimation of Spatial Autoregressions," Econometrics, MDPI, vol. 8(3), pages 1-26, September.
    6. Tiziano Arduini & Eleonora Patacchini & Edoardo Rainone, 2014. "Identification and Estimation of Outcome Response with Heterogeneous Treatment Externalities," EIEF Working Papers Series 1407, Einaudi Institute for Economics and Finance (EIEF), revised Sep 2014.
    7. Yang, Zhenlin, 2010. "A robust LM test for spatial error components," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 299-310, September.
    8. Baltagi, Badi H. & Liu, Long, 2008. "Testing for random effects and spatial lag dependence in panel data models," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3304-3306, December.
    9. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    10. Tappeiner, Gottfried & Hauser, Christoph & Walde, Janette, 2008. "Regional knowledge spillovers: Fact or artifact?," Research Policy, Elsevier, vol. 37(5), pages 861-874, June.
    11. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
    12. Lambert, D.M. & Wilcox, M. & English, A. & Stewart, L., 2008. "Ethanol Plant Location Determinants and County Comparative Advantage," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 40(1), pages 117-135, April.
    13. Frank Davenport, 2017. "Estimating standard errors in spatial panel models with time varying spatial correlation," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 155-177, March.
    14. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    15. Gil, Guilherme Dôco Roberti & Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & Mayrink, Vinícius Diniz, 2017. "Spatial statistical methods applied to the 2015 Brazilian energy distribution benchmarking model: Accounting for unobserved determinants of inefficiencies," Energy Economics, Elsevier, vol. 64(C), pages 373-383.
    16. Badi H. Baltagi & Zhenlin Yang, 2013. "Standardized LM tests for spatial error dependence in linear or panel regressions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 103-134, February.
    17. Guowei Cui & Vasilis Sarafidis & Takashi Yamagata, 2020. "IV Estimation of Spatial Dynamic Panels with Interactive Effects: Large Sample Theory and an Application on Bank Attitude," Monash Econometrics and Business Statistics Working Papers 11/20, Monash University, Department of Econometrics and Business Statistics.
    18. repec:asg:wpaper:1048 is not listed on IDEAS
    19. Daniel Griffith, 2010. "Modeling spatio-temporal relationships: retrospect and prospect," Journal of Geographical Systems, Springer, vol. 12(2), pages 111-123, June.
    20. Oleksandr Gromenko & Piotr Kokoszka & Matthew Reimherr, 2017. "Detection of change in the spatiotemporal mean function," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 29-50, January.
    21. Moscone, F. & Tosetti, E., 2010. "Testing for error cross section independence with an application to US health expenditure," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 283-291, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:95:y:2016:i:c:p:83-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.