IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i2p628-d308879.html
   My bibliography  Save this article

Classification of Urban Street Networks Based on Tree-Like Network Features

Author

Listed:
  • Baorui Han

    (Department of Traffic Engineering, College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Dazhi Sun

    (Department of Civil and Architectural Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363, USA)

  • Xiaomei Yu

    (Department of Traffic Engineering, College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Wanlu Song

    (Department of Traffic Engineering, College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Lisha Ding

    (Department of Traffic Engineering, College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China)

Abstract

Urban street networks derive their complexity not only from their hierarchical structure, but also from their tendency to simultaneously exhibit properties of both grid-like and tree-like networks. Using topological indicators based on planning parameters, we develop a method of network division that makes classification of such intermediate networks possible. To quantitatively describe the differences between street network patterns, we first carefully define a tree-like network structure according to topological principles. Based on the requirements of road planning, we broaden this definition and also consider three other types of street networks with different microstructures. We systematically compare the structure variables (connectivity, hierarchy, and accessibility) of selected street networks around the world and find several explanatory parameters (including the relative incidence of through streets, cul-de-sacs, and T-type intersections), which relate network function and features to network type. We find that by measuring a network’s degree of similarity to a tree-like network, we can refine the classification system to more than four classes, as well as easily distinguish between the extreme cases of pure grid-like and tree-like networks. Each indicator has different distinguishing capabilities and is adapted to a different range, thereby permitting networks to be grouped into corresponding types when the indicators are evaluated in a certain order. This research can further improve the theory of interaction between transportation and land use.

Suggested Citation

  • Baorui Han & Dazhi Sun & Xiaomei Yu & Wanlu Song & Lisha Ding, 2020. "Classification of Urban Street Networks Based on Tree-Like Network Features," Sustainability, MDPI, vol. 12(2), pages 1-13, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:628-:d:308879
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/2/628/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/2/628/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geoff Boeing, 2020. "A multi-scale analysis of 27,000 urban street networks: Every US city, town, urbanized area, and Zillow neighborhood," Environment and Planning B, , vol. 47(4), pages 590-608, May.
    2. Emanuele Strano & Matheus Viana & Luciano da Fontoura Costa & Alessio Cardillo & Sergio Porta & Vito Latora, 2013. "Urban Street Networks, a Comparative Analysis of Ten European Cities," Environment and Planning B, , vol. 40(6), pages 1071-1086, December.
    3. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    4. S. Chan & R. Donner & S. Lämmer, 2011. "Urban road networks — spatial networks with universal geometric features?," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 84(4), pages 563-577, December.
    5. Stephen Marshall & Jorge Gil & Karl Kropf & Martin Tomko & Lucas Figueiredo, 2018. "Street Network Studies: from Networks to Models and their Representations," Networks and Spatial Economics, Springer, vol. 18(3), pages 735-749, September.
    6. Porta, Sergio & Crucitti, Paolo & Latora, Vito, 2006. "The network analysis of urban streets: A dual approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 853-866.
    7. J. Buhl & J. Gautrais & N. Reeves & R. V. Solé & S. Valverde & P. Kuntz & G. Theraulaz, 2006. "Topological patterns in street networks of self-organized urban settlements," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 49(4), pages 513-522, February.
    8. Southworth, Michael & Ben-Joseph, Eran, 2004. "Reconsidering the Cul-de-sac," University of California Transportation Center, Working Papers qt1qn0g780, University of California Transportation Center.
    9. Boeing, Geoff, 2018. "Urban Spatial Order: Street Network Orientation, Configuration, and Entropy," SocArXiv qj3p5, Center for Open Science.
    10. Sergio Porta & Paolo Crucitti & Vito Latora, 2006. "The Network Analysis of Urban Streets: A Primal Approach," Environment and Planning B, , vol. 33(5), pages 705-725, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming Li & Wei Yu & Jun Zhang, 2023. "Clustering Analysis of Multilayer Complex Network of Nanjing Metro Based on Traffic Line and Passenger Flow Big Data," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    2. Xin Li & Yongsheng Qian & Junwei Zeng & Xuting Wei & Xiaoping Guang, 2022. "Measurement of Street Network Structure in Strip Cities: A Case Study of Lanzhou, China," Sustainability, MDPI, vol. 14(5), pages 1-17, February.
    3. Sven Eggimann, 2022. "The potential of implementing superblocks for multifunctional street use in cities," Nature Sustainability, Nature, vol. 5(5), pages 406-414, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boeing, Geoff, 2019. "Street Network Models and Measures for Every U.S. City, County, Urbanized Area, Census Tract, and Zillow-Defined Neighborhood," SocArXiv 7fxjz, Center for Open Science.
    2. Shiguang Wang & Dexin Yu & Mei-Po Kwan & Huxing Zhou & Yongxing Li & Hongzhi Miao, 2019. "The Evolution and Growth Patterns of the Road Network in a Medium-Sized Developing City: A Historical Investigation of Changchun, China, from 1912 to 2017," Sustainability, MDPI, vol. 11(19), pages 1-25, September.
    3. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    4. Geoff Boeing, 2020. "Planarity and street network representation in urban form analysis," Environment and Planning B, , vol. 47(5), pages 855-869, June.
    5. Boeing, Geoff, 2019. "The Morphology and Circuity of Walkable and Drivable Street Networks," SocArXiv edj2s, Center for Open Science.
    6. Tsiotas, Dimitrios, 2021. "Drawing indicators of economic performance from network topology: The case of the interregional road transportation in Greece," Research in Transportation Economics, Elsevier, vol. 90(C).
    7. Zhao, Pengxiang & Jia, Tao & Qin, Kun & Shan, Jie & Jiao, Chenjing, 2015. "Statistical analysis on the evolution of OpenStreetMap road networks in Beijing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 59-72.
    8. Boeing, Geoff, 2020. "Street Network Models and Indicators for Every Urban Area in the World," SocArXiv f2dqc, Center for Open Science.
    9. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    10. Batac, Rene C. & Cirunay, Michelle T., 2022. "Shortest paths along urban road network peripheries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    11. Shiqin Liu & Carl Higgs & Jonathan Arundel & Geoff Boeing & Nicholas Cerdera & David Moctezuma & Ester Cerin & Deepti Adlakha & Melanie Lowe & Billie Giles-Corti, 2021. "A Generalized Framework for Measuring Pedestrian Accessibility around the World Using Open Data," Papers 2105.08814, arXiv.org.
    12. Wagner, Roy, 2008. "On the metric, topological and functional structures of urban networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2120-2132.
    13. Feng, Huifang & Bai, Fengshan & Xu, Youji, 2019. "Identification of critical roads in urban transportation network based on GPS trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    14. Zhang, Tong & Zeng, Zhe & Jia, Tao & Li, Jing, 2016. "Examining the amenability of urban street networks for locating facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 469-479.
    15. Geoff Boeing, 2020. "A multi-scale analysis of 27,000 urban street networks: Every US city, town, urbanized area, and Zillow neighborhood," Environment and Planning B, , vol. 47(4), pages 590-608, May.
    16. Pelin Şahin Körmeçli, 2024. "Accessibility of Urban Tourism in Historical Areas: Analysis of UNESCO World Heritage Sites in Safranbolu," Sustainability, MDPI, vol. 16(6), pages 1-17, March.
    17. Marc Barthelemy, 2017. "From paths to blocks: New measures for street patterns," Environment and Planning B, , vol. 44(2), pages 256-271, March.
    18. Ding, Rui & Zhou, Tao & Zhang, Yilin & Du, YiMing & Chen, Shihui & Fu, Jun & Du, Linyu & Zhang, Ting & Li, Tongfei, 2022. "The influence of average speed ratio on multilayer traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    19. Boeing, Geoff, 2018. "Urban Spatial Order: Street Network Orientation, Configuration, and Entropy," SocArXiv qj3p5, Center for Open Science.
    20. Gaëtan Montero & Geoffrey Caruso & Mohamed Hilal & Isabelle Thomas, 2023. "A partition-free spatial clustering that preserves topology: application to built-up density," Journal of Geographical Systems, Springer, vol. 25(1), pages 5-35, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:628-:d:308879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.