IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v42y2015i6p1206-1222.html
   My bibliography  Save this article

Bayesian joint modeling of correlated counts data with application to adverse birth outcomes

Author

Listed:
  • Cindy Xin Feng

Abstract

In disease mapping, health outcomes measured at the same spatial locations may be correlated, so one can consider joint modeling the multivariate health outcomes accounting for their dependence. The general approaches often used for joint modeling include shared component models and multivariate models. An alternative way to model the association between two health outcomes, when one outcome can naturally serve as a covariate of the other, is to use ecological regression model. For example, in our application, preterm birth (PTB) can be treated as a predictor for low birth weight (LBW) and vice versa. Therefore, we proposed to blend the ideas from joint modeling and ecological regression methods to jointly model the relative risks for LBW and PTBs over the health districts in Saskatchewan, Canada, in 2000-2010. This approach is helpful when proxy of areal-level contextual factors can be derived based on the outcomes themselves when direct information on risk factors are not readily available. Our results indicate that the proposed approach improves the model fit when compared with the conventional joint modeling methods. Further, we showed that when no strong spatial autocorrelation is present, joint outcome modeling using only independent error terms can still provide a better model fit when compared with the separate modeling.

Suggested Citation

  • Cindy Xin Feng, 2015. "Bayesian joint modeling of correlated counts data with application to adverse birth outcomes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1206-1222, June.
  • Handle: RePEc:taf:japsta:v:42:y:2015:i:6:p:1206-1222
    DOI: 10.1080/02664763.2014.999031
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.999031
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2014.999031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mardia, K. V., 1988. "Multi-dimensional multivariate Gaussian Markov random fields with application to image processing," Journal of Multivariate Analysis, Elsevier, vol. 24(2), pages 265-284, February.
    2. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    3. Hogan J.W. & Tchernis R., 2004. "Bayesian Factor Analysis for Spatially Correlated Data, With Application to Summarizing Area-Level Material Deprivation From Census Data," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 314-324, January.
    4. Leonhard Knorr‐Held & Nicola G. Best, 2001. "A shared component model for detecting joint and selective clustering of two diseases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 73-85.
    5. Gelfand A.E. & Kim H-J. & Sirmans C.F. & Banerjee S., 2003. "Spatial Modeling With Spatially Varying Coefficient Processes," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 387-396, January.
    6. C.X. Feng & C.B. Dean, 2012. "Joint analysis of multivariate spatial count and zero‐heavy count outcomes using common spatial factor models," Environmetrics, John Wiley & Sons, Ltd., vol. 23(6), pages 493-508, September.
    7. Binsacca, D.B. & Ellis, J. & Martin, D.G. & Petitti, D.B., 1987. "Factors associated with low birthweight in an inner-city population: The role of financial problems," American Journal of Public Health, American Public Health Association, vol. 77(4), pages 505-506.
    8. Mackenbach, J. P., 1992. "Socio-economic health differences in the Netherlands: A review of recent empirical findings," Social Science & Medicine, Elsevier, vol. 34(3), pages 213-226, February.
    9. Xiaoping Jin & Bradley P. Carlin & Sudipto Banerjee, 2005. "Generalized Hierarchical Multivariate CAR Models for Areal Data," Biometrics, The International Biometric Society, vol. 61(4), pages 950-961, December.
    10. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zemenu Tadesse Tessema & Getayeneh Antehunegn Tesema & Susannah Ahern & Arul Earnest, 2023. "A Systematic Review of Areal Units and Adjacency Used in Bayesian Spatial and Spatio-Temporal Conditional Autoregressive Models in Health Research," IJERPH, MDPI, vol. 20(13), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoping Jin & Sudipto Banerjee & Bradley P. Carlin, 2007. "Order‐free co‐regionalized areal data models with application to multiple‐disease mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 817-838, November.
    2. Marco Gramatica & Peter Congdon & Silvia Liverani, 2021. "Bayesian modelling for spatially misaligned health areal data: A multiple membership approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 645-666, June.
    3. Rodrigues, E.C. & Assunção, R., 2012. "Bayesian spatial models with a mixture neighborhood structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 88-102.
    4. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    5. Sain, Stephan R. & Cressie, Noel, 2007. "A spatial model for multivariate lattice data," Journal of Econometrics, Elsevier, vol. 140(1), pages 226-259, September.
    6. Wheeler, David C. & Hickson, DeMarc A. & Waller, Lance A., 2010. "Assessing local model adequacy in Bayesian hierarchical models using the partitioned deviance information criterion," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1657-1671, June.
    7. Gamerman, Dani & Moreira, Ajax R. B., 2004. "Multivariate spatial regression models," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 262-281, November.
    8. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
    9. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    10. Li Xu & Qingshan Jiang & David R. Lairson, 2019. "Spatio-Temporal Variation of Gender-Specific Hypertension Risk: Evidence from China," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    11. Peter Congdon, 2011. "The Spatial Pattern of Suicide in the US in Relation to Deprivation, Fragmentation and Rurality," Urban Studies, Urban Studies Journal Limited, vol. 48(10), pages 2101-2122, August.
    12. Himchan Jeong & Dipak Dey, 2020. "Application of a Vine Copula for Multi-Line Insurance Reserving," Risks, MDPI, vol. 8(4), pages 1-23, October.
    13. Congdon, Peter, 2009. "Modelling the impact of socioeconomic structure on spatial health outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3047-3056, June.
    14. Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.
    15. Terrance Savitsky & Daniel McCaffrey, 2014. "Bayesian Hierarchical Multivariate Formulation with Factor Analysis for Nested Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 275-302, April.
    16. Maura Mezzetti, 2012. "Bayesian factor analysis for spatially correlated data: application to cancer incidence data in Scotland," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 49-74, March.
    17. Gómez, M. & Domínguez, M. C., 2015. "Seasonal copula models for the analysis of glacier discharge at King George Island, Antarctica," DES - Working Papers. Statistics and Econometrics. WS ws1513, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Levi, Evgeny & Craiu, Radu V., 2018. "Bayesian inference for conditional copulas using Gaussian Process single index models," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 115-134.
    19. Brian J. Reich & James S. Hodges, 2008. "Modeling Longitudinal Spatial Periodontal Data: A Spatially Adaptive Model with Tools for Specifying Priors and Checking Fit," Biometrics, The International Biometric Society, vol. 64(3), pages 790-799, September.
    20. Takahiro Yoshida & Morito Tsutsumi, 2018. "On the effects of spatial relationships in spatial compositional multivariate models," Letters in Spatial and Resource Sciences, Springer, vol. 11(1), pages 57-70, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:42:y:2015:i:6:p:1206-1222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.