IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v111y2016i516p1466-1479.html
   My bibliography  Save this article

Multiple Imputation of Missing Categorical and Continuous Values via Bayesian Mixture Models With Local Dependence

Author

Listed:
  • Jared S. Murray
  • Jerome P. Reiter

Abstract

We present a nonparametric Bayesian joint model for multivariate continuous and categorical variables, with the intention of developing a flexible engine for multiple imputation of missing values. The model fuses Dirichlet process mixtures of multinomial distributions for categorical variables with Dirichlet process mixtures of multivariate normal distributions for continuous variables. We incorporate dependence between the continuous and categorical variables by (1) modeling the means of the normal distributions as component-specific functions of the categorical variables and (2) forming distinct mixture components for the categorical and continuous data with probabilities that are linked via a hierarchical model. This structure allows the model to capture complex dependencies between the categorical and continuous data with minimal tuning by the analyst. We apply the model to impute missing values due to item nonresponse in an evaluation of the redesign of the Survey of Income and Program Participation (SIPP). The goal is to compare estimates from a field test with the new design to estimates from selected individuals from a panel collected under the old design. We show that accounting for the missing data changes some conclusions about the comparability of the distributions in the two datasets. We also perform an extensive repeated sampling simulation using similar data from complete cases in an existing SIPP panel, comparing our proposed model to a default application of multiple imputation by chained equations. Imputations based on the proposed model tend to have better repeated sampling properties than the default application of chained equations in this realistic setting. Supplementary materials for this article are available online.

Suggested Citation

  • Jared S. Murray & Jerome P. Reiter, 2016. "Multiple Imputation of Missing Categorical and Continuous Values via Bayesian Mixture Models With Local Dependence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1466-1479, October.
  • Handle: RePEc:taf:jnlasa:v:111:y:2016:i:516:p:1466-1479
    DOI: 10.1080/01621459.2016.1174132
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1174132
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1174132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Iorio, Maria & Muller, Peter & Rosner, Gary L. & MacEachern, Steven N., 2004. "An ANOVA Model for Dependent Random Measures," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 205-215, January.
    2. Joseph G. Ibrahim & Ming-Hui Chen & Stuart R. Lipsitz & Amy H. Herring, 2005. "Missing-Data Methods for Generalized Linear Models: A Comparative Review," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 332-346, March.
    3. Hang J. Kim & Jerome P. Reiter & Quanli Wang & Lawrence H. Cox & Alan F. Karr, 2014. "Multiple Imputation of Missing or Faulty Values Under Linear Constraints," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 375-386, July.
    4. Lumley, Thomas, 2004. "Analysis of Complex Survey Samples," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 9(i08).
    5. Yajuan Si & Jerome P. Reiter, 2013. "Nonparametric Bayesian Multiple Imputation for Incomplete Categorical Variables in Large-Scale Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 38(5), pages 499-521, October.
    6. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 287-296, July.
    7. Kropko, Jonathan & Goodrich, Ben & Gelman, Andrew & Hill, Jennifer, 2014. "Multiple Imputation for Continuous and Categorical Data: Comparing Joint Multivariate Normal and Conditional Approaches," Political Analysis, Cambridge University Press, vol. 22(4), pages 497-519.
    8. Di Zio, Marco & Guarnera, Ugo & Luzi, Orietta, 2007. "Imputation through finite Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5305-5316, July.
    9. Reiter, Jerome P. & Raghunathan, Trivellore E., 2007. "The Multiple Adaptations of Multiple Imputation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1462-1471, December.
    10. Dunson, David B. & Xing, Chuanhua, 2009. "Nonparametric Bayes Modeling of Multivariate Categorical Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1042-1051.
    11. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 300-301, July.
    12. J. G. Ibrahim & S. R. Lipsitz & M.‐H. Chen, 1999. "Missing covariates in generalized linear models when the missing data mechanism is non‐ignorable," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 173-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel H. Weinberg & John M. Abowd & Robert F. Belli & Noel Cressie & David C. Folch & Scott H. Holan & Margaret C. Levenstein & Kristen M. Olson & Jerome P. Reiter & Matthew D. Shapiro & Jolene Smyth, 2017. "Effects of a Government-Academic Partnership: Has the NSF-Census Bureau Research Network Helped Improve the U.S. Statistical System?," Working Papers 17-59r, Center for Economic Studies, U.S. Census Bureau.
    2. Razzak Humera & Heumann Christian, 2019. "Hybrid Multiple Imputation In A Large Scale Complex Survey," Statistics in Transition New Series, Statistics Poland, vol. 20(4), pages 33-58, December.
    3. Danhyang Lee & Jae Kwang Kim, 2022. "Semiparametric imputation using conditional Gaussian mixture models under item nonresponse," Biometrics, The International Biometric Society, vol. 78(1), pages 227-237, March.
    4. Russo, Massimiliano & Durante, Daniele & Scarpa, Bruno, 2018. "Bayesian inference on group differences in multivariate categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 136-149.
    5. Huaiyu Zang & Hang J. Kim & Bin Huang & Rhonda Szczesniak, 2023. "Bayesian causal inference for observational studies with missingness in covariates and outcomes," Biometrics, The International Biometric Society, vol. 79(4), pages 3624-3636, December.
    6. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    7. Humera Razzak & Christian Heumann, 2019. "Hybrid Multiple Imputation In A Large Scale Complex Survey," Statistics in Transition New Series, Polish Statistical Association, vol. 20(4), pages 33-58, December.
    8. Paiva Thais & Reiter Jerome P., 2017. "Stop or Continue Data Collection: A Nonignorable Missing Data Approach for Continuous Variables," Journal of Official Statistics, Sciendo, vol. 33(3), pages 579-599, September.
    9. Ryo Kato & Takahiro Hoshino, 2018. "Semiparametric Bayes Multiple Imputation for Regression Models with Missing Mixed Continuous-Discrete Covariates," Discussion Paper Series DP2018-15, Research Institute for Economics & Business Administration, Kobe University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Humera Razzak & Christian Heumann, 2019. "Hybrid Multiple Imputation In A Large Scale Complex Survey," Statistics in Transition New Series, Polish Statistical Association, vol. 20(4), pages 33-58, December.
    2. Chenyang Gu & Roee Gutman, 2017. "Combining item response theory with multiple imputation to equate health assessment questionnaires," Biometrics, The International Biometric Society, vol. 73(3), pages 990-998, September.
    3. Daniel Manrique‐Vallier & Jingchen Hu, 2018. "Bayesian non‐parametric generation of fully synthetic multivariate categorical data in the presence of structural zeros," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 635-647, June.
    4. R Florez-Lopez, 2010. "Effects of missing data in credit risk scoring. A comparative analysis of methods to achieve robustness in the absence of sufficient data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 486-501, March.
    5. Gabriele Beissel Durrant, 2009. "Imputation Methods for Handling Item-Nonresponse in the Social Sciences: A Methodological Review," Working Papers id:2007, eSocialSciences.
    6. Joost Ginkel & Pieter Kroonenberg, 2014. "Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 242-269, July.
    7. Verbeek, M.J.C.M. & Nijman, T.E., 1992. "Incomplete panels and selection bias : A survey," Discussion Paper 1992-7, Tilburg University, Center for Economic Research.
    8. Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
    9. Kunihama, T. & Herring, A.H. & Halpern, C.T. & Dunson, D.B., 2016. "Nonparametric Bayes modeling with sample survey weights," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 41-48.
    10. Mahsa Samsami & Ralf Wagner, 2021. "Investment Decisions with Endogeneity: A Dirichlet Tree Analysis," JRFM, MDPI, vol. 14(7), pages 1-19, July.
    11. Martin, Eisele & Zhu, Junyi, 2013. "Multiple imputation in a complex household survey - the German Panel on Household Finances (PHF): challenges and solutions," MPRA Paper 57666, University Library of Munich, Germany.
    12. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
    13. Dang, Hai-Anh H & Carletto, Calogero, 2022. "Recall Bias Revisited: Measure Farm Labor Using Mixed-Mode Surveys and Multiple Imputation," IZA Discussion Papers 14997, Institute of Labor Economics (IZA).
    14. Daniel Schunk, 2007. "A Markov Chain Monte Carlo Multiple Imputation Procedure for Dealing with Item Nonresponse in the German SAVE Survey," MEA discussion paper series 07121, Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy.
    15. Brownstone, David, 1997. "Multiple Imputation Methodology for Missing Data, Non-Random Response, and Panel Attrition," University of California Transportation Center, Working Papers qt2zd6w6hh, University of California Transportation Center.
    16. Zachary H. Seeskin, 2016. "Evaluating the Use of Commercial Data to Improve Survey Estimates of Property Taxes," CARRA Working Papers 2016-06, Center for Economic Studies, U.S. Census Bureau.
    17. F. Di Lascio & Simone Giannerini & Alessandra Reale, 2015. "Exploring copulas for the imputation of complex dependent data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 159-175, March.
    18. Ankita Patnaik & Jeffrey Hemmeter & Arif Mamun, "undated". "Promoting Readiness of Minors with Autism Spectrum Disorder: Evidence from a Randomized Controlled Trial," Mathematica Policy Research Reports a74c93d9bdce40709ad81cdbc, Mathematica Policy Research.
    19. Westermeier, Christian & Grabka, Markus M., 2016. "Longitudinal Wealth Data and Multiple Imputation: An Evaluation Study," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 10(3), pages 237-252.
    20. Youngjoo Cho & Debashis Ghosh, 2021. "Quantile-Based Subgroup Identification for Randomized Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 90-128, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:111:y:2016:i:516:p:1466-1479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.