IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i520p1708-1719.html
   My bibliography  Save this article

Bayesian Simultaneous Edit and Imputation for Multivariate Categorical Data

Author

Listed:
  • Daniel Manrique-Vallier
  • Jerome P. Reiter

Abstract

In categorical data, it is typically the case that some combinations of variables are theoretically impossible, such as a 3-year-old child who is married or a man who is pregnant. In practice, however, reported values often include such structural zeros due to, for example, respondent mistakes or data processing errors. To purge data of such errors, many statistical organizations use a process known as edit-imputation. The basic idea is first to select reported values to change according to some heuristic or loss function, and second to replace those values with plausible imputations. This two-stage process typically does not fully use information in the data when determining locations of errors, nor does it appropriately reflect uncertainty resulting from the edits and imputations. We present an alternative approach to editing and imputation for categorical microdata with structural zeros that addresses these shortcomings. Specifically, we use a Bayesian hierarchical model that couples a stochastic model for the measurement error process with a Dirichlet process mixture of multinomial distributions for the underlying, error-free values. The latter model is restricted to have support only on the set of theoretically possible combinations. We illustrate this integrated approach to editing and imputation using simulation studies with data from the 2000 U. S. census, and compare it to a two-stage edit-imputation routine. Supplementary material is available online.

Suggested Citation

  • Daniel Manrique-Vallier & Jerome P. Reiter, 2017. "Bayesian Simultaneous Edit and Imputation for Multivariate Categorical Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1708-1719, October.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:520:p:1708-1719
    DOI: 10.1080/01621459.2016.1231612
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1231612
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1231612?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hang J. Kim & Jörg Drechsler & Katherine J. Thompson, 2021. "Synthetic microdata for establishment surveys under informative sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 255-281, January.
    2. Daniel Manrique‐Vallier & Jingchen Hu, 2018. "Bayesian non‐parametric generation of fully synthetic multivariate categorical data in the presence of structural zeros," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 635-647, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:520:p:1708-1719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.