IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v181y2018i4p1105-1123.html
   My bibliography  Save this article

A comparison of joint models for longitudinal and competing risks data, with application to an epilepsy drug randomized controlled trial

Author

Listed:
  • Graeme L. Hickey
  • Pete Philipson
  • Andrea Jorgensen
  • Ruwanthi Kolamunnage‐Dona

Abstract

Joint modelling of longitudinal data and competing risks has grown over the past decade. Despite the recent methodological developments, there are still limited options for fitting these models in standard statistical software programs, which prohibits their adoption by applied biostatisticians. We summarize four published models, each of which has software available for model estimation. Each model features a different hazard function, latent association structure between the submodels, estimation approach and software implementation. Of the four models considered here, the model specifications and association structures are substantially different, thus complicating model‐to‐model comparison. The models are applied to the ‘Standard and new anti‐epileptic drugs’ trial of anti‐epileptic drugs to investigate the effect of drug titration on the treatment effects of lamotrigine and carbamazepine on the mode of treatment failure. Notwithstanding the vastly different association structures, we show that the inference from each model is consistent, namely, that there is a beneficial effect of lamotrigine on unacceptable adverse events over carbamazepine and a non‐significant effect on the hazard of inadequate seizure control. The association between anti‐epileptic drug titration and treatment failure was significant in most models. To allow for the routine adoption of joint modelling of competing risks and longitudinal data in the analysis of clinical data sets, further work is required on the development of model diagnostics to aid model choice.

Suggested Citation

  • Graeme L. Hickey & Pete Philipson & Andrea Jorgensen & Ruwanthi Kolamunnage‐Dona, 2018. "A comparison of joint models for longitudinal and competing risks data, with application to an epilepsy drug randomized controlled trial," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1105-1123, October.
  • Handle: RePEc:bla:jorssa:v:181:y:2018:i:4:p:1105-1123
    DOI: 10.1111/rssa.12348
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12348
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hélène Jacqmin-Gadda & Cécile Proust-Lima & Jeremy M.G. Taylor & Daniel Commenges, 2010. "Score Test for Conditional Independence Between Longitudinal Outcome and Time to Event Given the Classes in the Joint Latent Class Model," Biometrics, The International Biometric Society, vol. 66(1), pages 11-19, March.
    2. Lei Liu & Xuelin Huang & John O'Quigley, 2008. "Analysis of Longitudinal Data in the Presence of Informative Observational Times and a Dependent Terminal Event, with Application to Medical Cost Data," Biometrics, The International Biometric Society, vol. 64(3), pages 950-958, September.
    3. Proust-Lima, Cécile & Philipps, Viviane & Liquet, Benoit, 2017. "Estimation of Extended Mixed Models Using Latent Classes and Latent Processes: The R Package lcmm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i02).
    4. Robert M. Elashoff & Gang Li & Ning Li, 2008. "A Joint Model for Longitudinal Measurements and Survival Data in the Presence of Multiple Failure Types," Biometrics, The International Biometric Society, vol. 64(3), pages 762-771, September.
    5. Feng-Shou Ko, 2014. "Identification of longitudinal biomarkers for survival by a score test derived from a joint model of longitudinal and competing risks data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(10), pages 2270-2281, October.
    6. Dimitris Rizopoulos & Geert Verbeke & Geert Molenberghs, 2010. "Multiple-Imputation-Based Residuals and Diagnostic Plots for Joint Models of Longitudinal and Survival Outcomes," Biometrics, The International Biometric Society, vol. 66(1), pages 20-29, March.
    7. Ralitza Gueorguieva & Robert Rosenheck & Haiqun Lin, 2012. "Joint modelling of longitudinal outcome and interval‐censored competing risk dropout in a schizophrenia clinical trial," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 417-433, April.
    8. Binbing Yu & Pulak Ghosh, 2010. "Joint Modeling for Cognitive Trajectory and Risk of Dementia in the Presence of Death," Biometrics, The International Biometric Society, vol. 66(1), pages 294-300, March.
    9. Paul Blanche & Cécile Proust-Lima & Lucie Loubère & Claudine Berr & Jean-François Dartigues & Hélène Jacqmin-Gadda, 2015. "Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks," Biometrics, The International Biometric Society, vol. 71(1), pages 102-113, March.
    10. Rizopoulos, Dimitris, 2010. "JM: An R Package for the Joint Modelling of Longitudinal and Time-to-Event Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i09).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marta Spreafico & Francesca Ieva & Marta Fiocco, 2023. "Modelling time-varying covariates effect on survival via functional data analysis: application to the MRC BO06 trial in osteosarcoma," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 271-298, March.
    2. Melkamu Molla Ferede & Samuel Mwalili & Getachew Dagne & Simon Karanja & Workagegnehu Hailu & Mahmoud El-Morshedy & Afrah Al-Bossly, 2022. "A Semiparametric Bayesian Joint Modelling of Skewed Longitudinal and Competing Risks Failure Time Data: With Application to Chronic Kidney Disease," Mathematics, MDPI, vol. 10(24), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anaïs Rouanet & Pierre Joly & Jean‐François Dartigues & Cécile Proust‐Lima & Hélène Jacqmin‐Gadda, 2016. "Joint latent class model for longitudinal data and interval‐censored semi‐competing events: Application to dementia," Biometrics, The International Biometric Society, vol. 72(4), pages 1123-1135, December.
    2. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    3. Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
    4. Zhang, Cuihong & Ning, Jing & Cai, Jianwen & Squires, James E. & Belle, Steven H. & Li, Ruosha, 2024. "Dynamic risk score modeling for multiple longitudinal risk factors and survival," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    5. Daniel Commenges & Benoit Liquet & Cécile Proust-Lima, 2012. "Choice of Prognostic Estimators in Joint Models by Estimating Differences of Expected Conditional Kullback–Leibler Risks," Biometrics, The International Biometric Society, vol. 68(2), pages 380-387, June.
    6. Rizopoulos, Dimitris, 2012. "Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 491-501.
    7. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    8. Wang, Shikun & Li, Zhao & Lan, Lan & Zhao, Jieyi & Zheng, W. Jim & Li, Liang, 2022. "GPU accelerated estimation of a shared random effect joint model for dynamic prediction," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    9. Francesco Bartolucci & Alessio Farcomeni, 2015. "A discrete time event-history approach to informative drop-out in mixed latent Markov models with covariates," Biometrics, The International Biometric Society, vol. 71(1), pages 80-89, March.
    10. Chen, Chyong-Mei & Shen, Pao-sheng & Tseng, Yi-Kuan, 2018. "Semiparametric transformation joint models for longitudinal covariates and interval-censored failure time," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 116-127.
    11. Dimitris Rizopoulos & Geert Verbeke & Geert Molenberghs, 2010. "Multiple-Imputation-Based Residuals and Diagnostic Plots for Joint Models of Longitudinal and Survival Outcomes," Biometrics, The International Biometric Society, vol. 66(1), pages 20-29, March.
    12. Shahedul A. Khan & Nyla Basharat, 2022. "Accelerated failure time models for recurrent event data analysis and joint modeling," Computational Statistics, Springer, vol. 37(4), pages 1569-1597, September.
    13. Hongyuan Cao & Mathew M. Churpek & Donglin Zeng & Jason P. Fine, 2015. "Analysis of the Proportional Hazards Model With Sparse Longitudinal Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1187-1196, September.
    14. Na Cai & Wenbin Lu & Hao Helen Zhang, 2012. "Time-Varying Latent Effect Model for Longitudinal Data with Informative Observation Times," Biometrics, The International Biometric Society, vol. 68(4), pages 1093-1102, December.
    15. Mélissa Lemoine & Gerhard Gmel & Simon Foster & Simon Marmet & Joseph Studer, 2020. "Multiple trajectories of alcohol use and the development of alcohol use disorder: Do Swiss men mature-out of problematic alcohol use during emerging adulthood?," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-17, January.
    16. Xiaoyu Wang & Liuquan Sun, 2023. "Joint modeling of generalized scale-change models for recurrent event and failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 1-33, January.
    17. Oi, Katsuya, 2020. "Disuse as time away from a cognitively demanding job; how does it temporally or developmentally impact late-life cognition?," Intelligence, Elsevier, vol. 82(C).
    18. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    19. Karl, Andrew T. & Yang, Yan & Lohr, Sharon L., 2014. "Computation of maximum likelihood estimates for multiresponse generalized linear mixed models with non-nested, correlated random effects," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 146-162.
    20. Alessandro Gasparini & Keith R. Abrams & Jessica K. Barrett & Rupert W. Major & Michael J. Sweeting & Nigel J. Brunskill & Michael J. Crowther, 2020. "Mixed‐effects models for health care longitudinal data with an informative visiting process: A Monte Carlo simulation study," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(1), pages 5-23, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:181:y:2018:i:4:p:1105-1123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.