IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i4p1123-1135.html
   My bibliography  Save this article

Joint latent class model for longitudinal data and interval‐censored semi‐competing events: Application to dementia

Author

Listed:
  • Anaïs Rouanet
  • Pierre Joly
  • Jean‐François Dartigues
  • Cécile Proust‐Lima
  • Hélène Jacqmin‐Gadda

Abstract

Joint models are used in ageing studies to investigate the association between longitudinal markers and a time‐to‐event, and have been extended to multiple markers and/or competing risks. The competing risk of death must be considered in the elderly because death and dementia have common risk factors. Moreover, in cohort studies, time‐to‐dementia is interval‐censored since dementia is assessed intermittently. So subjects can develop dementia and die between two visits without being diagnosed. To study predementia cognitive decline, we propose a joint latent class model combining a (possibly multivariate) mixed model and an illness–death model handling both interval censoring (by accounting for a possible unobserved transition to dementia) and semi‐competing risks. Parameters are estimated by maximum‐likelihood handling interval censoring. The correlation between the marker and the times‐to‐events is captured by latent classes, homogeneous sub‐groups with specific risks of death, dementia, and profiles of cognitive decline. We propose Markovian and semi‐Markovian versions. Both approaches are compared to a joint latent‐class model for competing risks through a simulation study, and applied in a prospective cohort study of cerebral and functional ageing to distinguish different profiles of cognitive decline associated with risks of dementia and death. The comparison highlights that among subjects with dementia, mortality depends more on age than on duration of dementia. This model distinguishes the so‐called terminal predeath decline (among healthy subjects) from the predementia decline.

Suggested Citation

  • Anaïs Rouanet & Pierre Joly & Jean‐François Dartigues & Cécile Proust‐Lima & Hélène Jacqmin‐Gadda, 2016. "Joint latent class model for longitudinal data and interval‐censored semi‐competing events: Application to dementia," Biometrics, The International Biometric Society, vol. 72(4), pages 1123-1135, December.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1123-1135
    DOI: 10.1111/biom.12530
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12530
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert M. Elashoff & Gang Li & Ning Li, 2008. "A Joint Model for Longitudinal Measurements and Survival Data in the Presence of Multiple Failure Types," Biometrics, The International Biometric Society, vol. 64(3), pages 762-771, September.
    2. Ralitza Gueorguieva & Robert Rosenheck & Haiqun Lin, 2012. "Joint modelling of longitudinal outcome and interval‐censored competing risk dropout in a schizophrenia clinical trial," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 417-433, April.
    3. Hélène Jacqmin-Gadda & Cécile Proust-Lima & Jeremy M.G. Taylor & Daniel Commenges, 2010. "Score Test for Conditional Independence Between Longitudinal Outcome and Time to Event Given the Classes in the Joint Latent Class Model," Biometrics, The International Biometric Society, vol. 66(1), pages 11-19, March.
    4. Hawkins, Dollena S. & Allen, David M. & Stromberg, Arnold J., 2001. "Determining the number of components in mixtures of linear models," Computational Statistics & Data Analysis, Elsevier, vol. 38(1), pages 15-48, November.
    5. Proust-Lima, Cécile & Joly, Pierre & Dartigues, Jean-François & Jacqmin-Gadda, Hélène, 2009. "Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1142-1154, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ardo Hout & Graciela Muniz-Terrera, 2019. "Hidden three-state survival model for bivariate longitudinal count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 529-545, July.
    2. Chen, Chyong-Mei & Shen, Pao-sheng & Tseng, Yi-Kuan, 2018. "Semiparametric transformation joint models for longitudinal covariates and interval-censored failure time," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 116-127.
    3. Daniel Commenges, 2019. "Dealing with death when studying disease or physiological marker: the stochastic system approach to causality," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 381-405, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Graeme L. Hickey & Pete Philipson & Andrea Jorgensen & Ruwanthi Kolamunnage‐Dona, 2018. "A comparison of joint models for longitudinal and competing risks data, with application to an epilepsy drug randomized controlled trial," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1105-1123, October.
    2. Rizopoulos, Dimitris, 2012. "Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 491-501.
    3. Proust-Lima, Cécile & Philipps, Viviane & Liquet, Benoit, 2017. "Estimation of Extended Mixed Models Using Latent Classes and Latent Processes: The R Package lcmm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i02).
    4. Sarstedt, Marko & Salcher, André, 2007. "Modellselektion in Finite Mixture PLS-Modellen," Discussion Papers in Business Administration 1394, University of Munich, Munich School of Management.
    5. Ana Oliveira-Brochado & F. Vitorino Martins, 2006. "Examining the segment retention problem for the “Group Satellite” case," FEP Working Papers 220, Universidade do Porto, Faculdade de Economia do Porto.
    6. Melkamu Molla Ferede & Samuel Mwalili & Getachew Dagne & Simon Karanja & Workagegnehu Hailu & Mahmoud El-Morshedy & Afrah Al-Bossly, 2022. "A Semiparametric Bayesian Joint Modelling of Skewed Longitudinal and Competing Risks Failure Time Data: With Application to Chronic Kidney Disease," Mathematics, MDPI, vol. 10(24), pages 1-21, December.
    7. Proust-Lima, Cécile & Joly, Pierre & Dartigues, Jean-François & Jacqmin-Gadda, Hélène, 2009. "Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1142-1154, February.
    8. Gianfranco Di Vaio & Kerstin Enflo, 2009. "Did Globalization Lead to Segmentation? Identifying Cross-Country Growth Regimes in the Long-Run," Working Papers CELEG 0902, Dipartimento di Economia e Finanza, LUISS Guido Carli.
    9. Hermann Ndoya & Bruno Emmanuel Ongo Nkoa & Francis Hypolite Kemeze & Tii N. Nchofoung, 2024. "Financial development and economic complexity: The role of country stability," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 32(2), pages 415-447, April.
    10. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    11. Brisa N. Sánchez & Shan Kang & Bhramar Mukherjee, 2012. "A Latent Variable Approach to Study Gene–Environment Interactions in the Presence of Multiple Correlated Exposures," Biometrics, The International Biometric Society, vol. 68(2), pages 466-476, June.
    12. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    13. Di Vaio, Gianfranco & Enflo, Kerstin, 2011. "Did globalization drive convergence? Identifying cross-country growth regimes in the long run," European Economic Review, Elsevier, vol. 55(6), pages 832-844, August.
    14. Bernhardt, Paul W. & Zhang, Daowen & Wang, Huixia Judy, 2015. "A fast EM algorithm for fitting joint models of a binary response and multiple longitudinal covariates subject to detection limits," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 37-53.
    15. Sawadogo, Relwendé & Semedo, Gervasio, 2021. "Financial inclusion, income inequality, and institutions in sub-Saharan Africa: Identifying cross-country inequality regimes," International Economics, Elsevier, vol. 167(C), pages 15-28.
    16. Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
    17. Meng Li & Sijia Xiang & Weixin Yao, 2016. "Robust estimation of the number of components for mixtures of linear regression models," Computational Statistics, Springer, vol. 31(4), pages 1539-1555, December.
    18. Jaeun Choi & Jianwen Cai & Donglin Zeng, 2017. "Penalized Likelihood Approach for Simultaneous Analysis of Survival Time and Binary Longitudinal Outcome," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 190-216, November.
    19. Jesse D. Raffa & Joel A. Dubin, 2015. "Multivariate longitudinal data analysis with mixed effects hidden Markov models," Biometrics, The International Biometric Society, vol. 71(3), pages 821-831, September.
    20. Jiehuan Sun & Jose D. Herazo‐Maya & Philip L. Molyneaux & Toby M. Maher & Naftali Kaminski & Hongyu Zhao, 2019. "Regularized Latent Class Model for Joint Analysis of High‐Dimensional Longitudinal Biomarkers and a Time‐to‐Event Outcome," Biometrics, The International Biometric Society, vol. 75(1), pages 69-77, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1123-1135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.