IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v81y2013i2p230-248.html
   My bibliography  Save this article

Modelling Strategies for Repeated Multiple Response Data

Author

Listed:
  • Thomas Suesse
  • Ivy Liu

Abstract

No abstract is available for this item.

Suggested Citation

  • Thomas Suesse & Ivy Liu, 2013. "Modelling Strategies for Repeated Multiple Response Data," International Statistical Review, International Statistical Institute, vol. 81(2), pages 230-248, August.
  • Handle: RePEc:bla:istatr:v:81:y:2013:i:2:p:230-248
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/insr.12015
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suesse, Thomas & Liu, Ivy, 2012. "Mantel–Haenszel estimators of odds ratios for stratified dependent binomial data," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2705-2717.
    2. Anders Ekholm & Jukka Jokinen & John W. McDonald & Peter W. F. Smith, 2003. "Joint Regression and Association Modeling of Longitudinal Ordinal Data," Biometrics, The International Biometric Society, vol. 59(4), pages 795-803, December.
    3. Christopher R. Bilder & Thomas M. Loughin, 2002. "Testing for Conditional Multiple Marginal Independence," Biometrics, The International Biometric Society, vol. 58(1), pages 200-208, March.
    4. Wei Pan, 2001. "Akaike's Information Criterion in Generalized Estimating Equations," Biometrics, The International Biometric Society, vol. 57(1), pages 120-125, March.
    5. Alan Agresti & Ivy Liu, 2001. "Strategies for Modeling a Categorical Variable Allowing Multiple Category Choices," Sociological Methods & Research, , vol. 29(4), pages 403-434, May.
    6. Hin, Lin-Yee & Carey, Vincent J. & Wang, You-Gan, 2007. "Criteria for WorkingCorrelationStructure Selection in GEE: Assessment via Simulation," The American Statistician, American Statistical Association, vol. 61, pages 360-364, November.
    7. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    8. Stuart R. Lipsitz & Garrett M. Fitzmaurice & Joseph G. Ibrahim & Debajyoti Sinha & Michael Parzen & Steven Lipshultz, 2009. "Joint generalized estimating equations for multivariate longitudinal binary outcomes with missing data: an application to acquired immune deficiency syndrome data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 3-20, January.
    9. Christopher R. Bilder & Thomas M. Loughin, 2004. "Testing for Marginal Independence between Two Categorical Variables with Multiple Responses," Biometrics, The International Biometric Society, vol. 60(1), pages 241-248, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Suesse & Ivy Liu, 2019. "Mantel–Haenszel estimators of a common odds ratio for multiple response data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(1), pages 57-76, March.
    2. Peng, Cheng & Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2022. "Latent Gaussian copula models for longitudinal binary data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    3. Francis L. Huang, 2022. "Analyzing Cross-Sectionally Clustered Data Using Generalized Estimating Equations," Journal of Educational and Behavioral Statistics, , vol. 47(1), pages 101-125, February.
    4. Liya Fu & Yangyang Hao & You-Gan Wang, 2018. "Working correlation structure selection in generalized estimating equations," Computational Statistics, Springer, vol. 33(2), pages 983-996, June.
    5. Xu, Jianwen & Wang, You-Gan, 2014. "Intra-cluster correlation structure in longitudinal data analysis: Selection criteria and misspecification tests," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 70-77.
    6. María Carmen Pardo & Rosa Alonso, 2019. "Working correlation structure selection in GEE analysis," Statistical Papers, Springer, vol. 60(5), pages 1447-1467, October.
    7. An Creemers & Marc Aerts & Niel Hens & Ziv Shkedy & Frank De Smet & Philippe Beutels, 2011. "Revealing age-specific past and future unrelated costs of pneumococcal infections by flexible generalized estimating equations," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1533-1547, August.
    8. Anna Crisci & Luigi D’Ambra & Vincenzo Esposito, 2019. "A Generalized Estimating Equation in Longitudinal Data to Determine an Efficiency Indicator for Football Teams," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 249-261, November.
    9. Philip M. Westgate & Woodrow W. Burchett, 2017. "A Comparison of Correlation Structure Selection Penalties for Generalized Estimating Equations," The American Statistician, Taylor & Francis Journals, vol. 71(4), pages 344-353, October.
    10. Shu Yang & Jae Kwang Kim, 2016. "Likelihood-based Inference with Missing Data Under Missing-at-Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 436-454, June.
    11. Wei Pan, 2001. "Model Selection in Estimating Equations," Biometrics, The International Biometric Society, vol. 57(2), pages 529-534, June.
    12. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
    13. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    14. Vens, Maren & Ziegler, Andreas, 2012. "Generalized estimating equations and regression diagnostics for longitudinal controlled clinical trials: A case study," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1232-1242.
    15. Ricardo Smith Ramírez, 2007. "FIML estimation of treatment effect models with endogenous selection and multiple censored responses via a Monte Carlo EM Algorithm," Working Papers DTE 403, CIDE, División de Economía.
    16. Michael S. Rendall & Bonnie Ghosh-Dastidar & Margaret M. Weden & Zafar Nazarov, 2011. "Multiple Imputation for Combined-Survey Estimation With Incomplete Regressors In One But Not Both Surveys," Working Papers WR-887-1, RAND Corporation.
    17. Katrina N. Burns & Kan Sun & Julius N. Fobil & Richard L. Neitzel, 2016. "Heart Rate, Stress, and Occupational Noise Exposure among Electronic Waste Recycling Workers," IJERPH, MDPI, vol. 13(1), pages 1-16, January.
    18. Brent A. Coull & Alan Agresti, 2000. "Random Effects Modeling of Multiple Binomial Responses Using the Multivariate Binomial Logit-Normal Distribution," Biometrics, The International Biometric Society, vol. 56(1), pages 73-80, March.
    19. Song Guo & Feng Ling & Juan Hou & Jinna Wang & Guiming Fu & Zhenyu Gong, 2014. "Mosquito Surveillance Revealed Lagged Effects of Mosquito Abundance on Mosquito-Borne Disease Transmission: A Retrospective Study in Zhejiang, China," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-8, November.
    20. J. E. Mills & C. A. Field & D. J. Dupuis, 2002. "Marginally Specified Generalized Linear Mixed Models: A Robust Approach," Biometrics, The International Biometric Society, vol. 58(4), pages 727-734, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:81:y:2013:i:2:p:230-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.